
2017-18

Onwards

(MR-17)

MALLA REDDY ENGINEERING COLLEGE (Autonomous) B. Tech.

VI

Semester

Code:

70525

INFORMATION SECURITY L T P

Credits: 3 2 2 -

Prerequisites: Computer Networks

Course Objectives: This course enables the students to understand the main concepts of
Security services and Attacks, categorize various Conventional Encryption Algorithms, compare
various algorithms and fundamental ideas of public-key cryptography, illustrate various E-Mail
privacy techniques and infer web security and intrusion detection systems.

MODULE I: Introduction - Security Attacks and Mechanisms [10 Periods]

Security Attacks - Security Attacks (Interruption, Interception, Modification and Fabrication),
Security Services (Confidentiality, Authentication, Integrity, Non-repudiation, access Control
and Availability)

Security Mechanisms - A model for Internetwork security, Internet Standards and RFCs, Buffer
overflow & format string vulnerabilities, TCP session hijacking, ARP attacks, route table
modification, UDP hijacking and man-in-the-middle attacks.

MODULE II: Encryption [09 Periods]

Conventional Encryption Principles - Conventional Encryption Principles, Conventional
encryption algorithms, cipher block modes of operation, location of encryption devices.

Key Distribution - key distribution Approaches of Message Authentication, Secure Hash
Functions and HMAC.

MODULE III: Cryptographic Techniques [10 Periods]

A: Cryptographic Techniques - Public key cryptography principles, public key cryptography
algorithms, digital signatures, digital Certificates.

B: Key Management - Certificate Authority and key management Kerberos, X.509 Directory
Authentication Service.

MODULE IV: Email Privacy [09 Periods]

Email Privacy - Pretty Good Privacy (PGP) Characteristics of PGP, Cryptographic Keys and Key
rings, PGP Message Generation.

S/MIME - S/MIME, MIME Types and Subtypes, Cryptographic algorithms in S/MIME.

MODULE V: IP & Web Security [10 Periods]

IP Security - IP Security Overview, IP Security Architecture, Authentication Header,
Encapsulating Security Payload, Combining Security Associations and Key Management. Web

Security - Web Security Requirements, Secure Socket Layer (SSL) and Transport Layer Security
(TLS), Secure Electronic Transaction (SET), Basic concepts of SNMP, SNMPv1 Community
facility and SNMPv3. Intruders, Viruses and related threats, Firewall Design principles, Trusted
Systems, Intrusion Detection Systems.

TEXTBOOKS

 1. William Stallings ―"Network Security Essentials (Applications and Standards)”, 4th
Edition,Pearson Education 2011.

2. Behrouz A . Forouzan, "Cryptography and Network Security" TMH 2007.

REFERENCES

1. Eric Maiwald, “Fundamentals of Network Securit", Dreamtech press. 2. William
Stallings,"Cryptography and network Security", 3rd Edition, PHI/Pearson.

3. Atul Kahate,"Cryptography and Network Security", 2nd edition, TMH.

E-RESOURCES

1.http://sbmu.ac.ir/uploads/3._Network-security-essentials-4th-edition-william-stallings.pdf

2.https://docs.google.com/file/d/0B5F6yMKYDUbrYXE4X1ZCUHpLNnc/edit

3.https://www.ijirset.com/upload/2015/march/43_A_COMPARATIVE.pdf
4.http://airccse.org/journal/ijcis/ijcisleaflet.pdf
5.http://www.nptelvideos.in/2012/11/cryptography-and-network-security.html
6.http://ndl.iitkgp.ac.in/document/xttk-4kfhvUwVlXBW-YWRO7kjOasUj1lin1v_dK-
KbzKa2DvORf95P_mMwhs8pOqinTDauGH9wz6GFBPImIE6A

Course Outcomes: At the end of the course, students will be able to

1. Analyze various security service mechanisms.

2. Compare and contrast symmetric and asymmetric encryption systems and their vulnerability
to various attacks.

3. Apply cryptographic techniques in real time applications

4. Formulate web security services and mechanisms.

5. Distinguish SSL, TLS and its applications.

Information Security (Unit-1) Introduction to Information Security

UNIT - I
SECURITY ATTACKS (INTERRUPTION, INTERCEPTION, MODIFICATION AND FABRICATION), SECURITY SERVICES
(CONFIDENTIALITY, AUTHENTICATION, INTEGRITY, NON-REPUDIATION, ACCESS CONTROL AND AVAILABILITY)

AND MECHANISMS, A MODEL FOR INTERNETWORK SECURITY, INTERNET STANDARDS AND RFCS, BUFFER

OVERFLOW & FORMAT STRING VULNERABILITIES, TCP SESSION HIJACKING, ARP ATTACKS, ROUTE TABLE

MODIFICATION, UDP HIJACKING, AND MAN-IN-THE-MIDDLE ATTACKS.

Introduction:

This is the age of universal electronic connectivity, where the activities like hacking,

viruses, electronic fraud are very common. Unless security measures are taken, a network

conversation or a distributed application can be compromised easily.

Some simple examples are:

 Online purchases using a credit/debit card.

 A customer unknowingly being directed to a false website.

 A hacker sending a message to a person pretending to be someone else.

Information security has been affected by two major developments over the last several

decades. First one is introduction of computers into organizations and the second one being

introduction of distributed systems and the use of networks and communication facilities for

carrying data between users & computers. These two developments lead to ‘computer security’

and ‘network security’, where the computer security deals with collection of tools designed to

protect data and to thwart hackers. Network security measures are needed to protect data

during transmission. But keep in mind that, it is the information and our ability to access that

information that we are really trying to protect and not the computers and networks.

Information Security: It can be defined as “measures adopted to prevent the unauthorized use,

misuse, modification or denial of use of knowledge, facts, data or capabilities”. Three aspects of

IS are:

 Security Attack:
Any action that comprises the security of information

 Security Mechanism:
A mechanism that is designed to detect, prevent, or recover from a security.

 Security Service:

It is a processing or communication service that enhances the security of the
data processing systems and information transfer. The services are intended to counter

1

Information Security (Unit-1) Introduction to Information Security

security attacks by making use of one or more security mechanisms to provide the
service.

Security Attacks

Security attacks can be classified in terms of Passive attacks and Active attacks as per X.800 and
RFC 2828

Different kinds of attacks are:

Interruption

Sender Receiver

S R

An asset of the system is destroyed or becomes unavailable or unusable. It is an attack on
availability.

Examples:
 Destruction of some hardware

 Jamming wireless signals

 Disabling file management systems

Interception

Sender Receiver

S R

H

Hacker

An unauthorized party gains access to an asset. Attack on confidentiality.

Examples:
 Wire tapping to capture data in a network.

 Illicitly copying data or programs

 Eavesdropping

2

Information Security (Unit-1) Introduction to Information Security

Modification:

S R

H

When an unauthorized party gains access and tampers an asset. Attack is on Integrity.

Examples:
 Changing data file

 Altering a program and the contents of a message

Fabrication

S R

H

An unauthorized party inserts a counterfeit object into the system. Attack on
Authenticity. Also called impersonation

Examples:
 Hackers gaining access to a personal email and sending message

 Insertion of records in data files

 Insertion of spurious messages in a network

Passive Attacks

A Passive attack attempts to learn or make use of information from the system, but does
not affect system resources.

Two types:

 Release of message content

It may be desirable to prevent the opponent from learning the contents (i.e sensitive or
confidential info) of the transmission.

3

Information Security (Unit-1) Introduction to Information Security

 Traffic analysis

A more subtle technique where the opponent could determine the location and identity

of communicating hosts and could observe the frequency & length of encrypted messages

being exchanged there by guessing the nature of communication taking place.

Passive attacks are very difficult to detect because they do not involve any alternation of

the data. As the communications take place in a very normal fashion, neither the sender nor

receiver is aware that a third party has read the messages or observed the traffic pattern. So,

the emphasis in dealing with passive attacks is on prevention rather than detection.

Active Attacks

Active attacks involve some modification of the data stream or creation of a false
stream. An active attack attempts to alter system resources or affect their operation.

Four types:
 Masquerade: Here, an entity pretends to be some other entity. It usually includes one of the other

forms of active attack.

 Replay: It involves the passive capture of a data unit and its subsequent retransmission to
produce an unauthorized effect.

 Modification of messages: It means that some portion of a legitimate message is altered, or
that messages are delayed to produce an unauthorized effect.

Ex: “John’s acc no is 2346” is modified as “John’s acc no is 7892”

 Denial of service: This attack prevents or inhibits the normal use or management of
communication facilities.

Ex: a: Disruption of entire network by disabling it

b: Suppression of all messages to a particular destination by a third party.

Active attacks present the opposite characteristics of passive attacks. Whereas passive
attacks are difficult to detect, measures are available to prevent their success. On the other
hand, it is quite difficult to prevent active attacks absolutely, because of the wide variety of
potential physical, software and network vulnerabilities. Instead, the goal is to detect active
attacks and to recover from any disruption or delays caused by them.

Security Services:

It is a processing or communication service that is provided by a system to give a specific

kind of production to system resources. Security services implement security policies and are

implemented by security mechanisms.

4

Information Security (Unit-1) Introduction to Information Security

 Confidentiality

Confidentiality is the protection of transmitted data from passive attacks. It is used to

prevent the disclosure of information to unauthorized individuals or systems. It has been

defined as “ensuring that information is accessible only to those authorized to have access”.

The other aspect of confidentiality is the protection of traffic flow from analysis. Ex: A credit
card number has to be secured during online transaction.

 Authentication

This service assures that a communication is authentic. For a single message

transmission, its function is to assure the recipient that the message is from intended

source. For an ongoing interaction two aspects are involved. First, during connection

initiation the service assures the authenticity of both parties. Second, the connection

between the two hosts is not interfered allowing a third party to masquerade as one of the

two parties. Two specific authentication services defines in X.800 are

 Peer entity authentication: Verifies the identities of the peer entities involved in
communication. Provides use at time of connection establishment and during
data transmission. Provides confidence against a masquerade or a replay attack

 Data origin authentication: Assumes the authenticity of source of data unit, but
does not provide protection against duplication or modification of data units.
Supports applications like electronic mail, where no prior interactions take place
between communicating entities.

 Integrity

Integrity means that data cannot be modified without authorization. Like confidentiality,

it can be applied to a stream of messages, a single message or selected fields within a

message. Two types of integrity services are available. They are

 Connection-Oriented Integrity Service: This service deals with a stream of
messages, assures that messages are received as sent, with no duplication,
insertion, modification, reordering or replays. Destruction of data is also covered
here. Hence, it attends to both message stream modification and denial of
service.

 Connectionless-Oriented Integrity Service: It deals with individual messages regardless
of larger context, providing protection against message modification

only.

An integrity service can be applied with or without recovery. Because it is related to

active attacks, major concern will be detection rather than prevention. If a violation is

detected and the service reports it, either human intervention or automated recovery

machines are required to recover.

Information Security (Unit-1) Introduction to Information Security

 Non-repudiation

Non-repudiation prevents either sender or receiver from denying a transmitted
message. This capability is crucial to e-commerce. Without it an individual or entity can
deny that he, she or it is responsible for a transaction, therefore not financially liable.

 Access Control
This refers to the ability to control the level of access that individuals or entities have to

a network or system and how much information they can receive. It is the ability to limit
and control the access to host systems and applications via communication links. For this,
each entity trying to gain access must first be identified or authenticated, so that access
rights can be tailored to the individuals.

 Availability

It is defined to be the property of a system or a system resource being accessible and
usable upon demand by an authorized system entity. The availability can significantly be
affected by a variety of attacks, some amenable to automated counter measures i.e
authentication and encryption and others need some sort of physical action to prevent or
recover from loss of availability of elements of a distributed system.

Security Mechanisms:

According to X.800, the security mechanisms are divided into those implemented in a
specific protocol layer and those that are not specific to any particular protocol layer or security
service. X.800 also differentiates reversible & irreversible encipherment mechanisms. A
reversible encipherment mechanism is simply an encryption algorithm that allows data to be
encrypted and subsequently decrypted, where as irreversible encipherment include hash
algorithms and message authentication codes used in digital signature and message
authentication applications

 Specific Security Mechanisms:

Incorporated into the appropriate protocol layer in order to provide some of

the OSI security services,

 Encipherment: It refers to the process of applying mathematical algorithms for
converting data into a form that is not intelligible. This depends on algorithm used and
encryption keys.

 Digital Signature: The appended data or a cryptographic transformation applied to any
data unit allowing to prove the source and integrity of the data unit and protect against
forgery.

 Access Control: A variety of techniques used for enforcing access permissions to the
system resources.

 Data Integrity: A variety of mechanisms used to assure the integrity of a data unit or
 stream of data units.

Information Security (Unit-1) Introduction to Information Security

 Authentication Exchange: A mechanism intended to ensure the identity of an entity by
means of information exchange.

 Traffic Padding: The insertion of bits into gaps in a data stream to frustrate traffic
analysis attempts.

 Routing Control: Enables selection of particular physically secure routes for certain data
and allows routing changes once a breach of security is suspected.

 Notarization: The use of a trusted third party to assure certain properties of a data
exchange

 Pervasive Security Mechanisms:

These are not specific to any particular OSI security service or protocol layer.

 Trusted Functionality: That which is perceived to b correct with respect to some criteria

 Security Level: The marking bound to a resource (which may be a data unit) that names
or designates the security attributes of that resource.

 Event Detection: It is the process of detecting all the events related to network security.

 Security Audit Trail: Data collected and potentially used to facilitate a security audit,
which is an independent review and examination of system records and activities.

 Security Recovery: It deals with requests from mechanisms, such as event handling and
management functions, and takes recovery actions.

A Model Of Inter Network Security

Data is transmitted over network between two communicating parties, who must
cooperate for the exchange to take place. A logical information channel is established by
defining a route through the internet from source to destination by use of communication
protocols by the two parties. Whenever an opponent presents a threat to confidentiality,

7

Information Security (Unit-1) Introduction to Information Security

authenticity of information, security aspects come into play. Two components are present in
almost all the security providing techniques.

 A security-related transformation on the information to be sent making it unreadable by the

opponent, and the addition of a code based on the contents of the message, used to verify
the identity of sender.

 Some secret information shared by the two principals and, it is hoped, unknown to the
opponent. An example is an encryption key used in conjunction with the transformation to
scramble the message before transmission and unscramble it on reception

A trusted third party may be needed to achieve secure transmission. It is responsible for
distributing the secret information to the two parties, while keeping it away from any
opponent. It also may be needed to settle disputes between the two parties regarding
authenticity of a message transmission. The general model shows that there are four basic
tasks in designing a particular security service:

1. Design an algorithm for performing the security-related transformation. The algorithm
should be such that an opponent cannot defeat its purpose

2. Generate the secret information to be used with the algorithm
3. Develop methods for the distribution and sharing of the secret information
4. Specify a protocol to be used by the two principals that makes use of the security

algorithm and the secret information to achieve a particular security service

Various other threats to information system like unwanted access still exist. The
existence of hackers attempting to penetrate systems accessible over a network remains a
concern. Another threat is placement of some logic in computer system affecting various
applications and utility programs. This inserted code presents two kinds of threats.

 Information access threats intercept or modify data on behalf of users who should not
have access to that data

 Service threats exploit service flaws in computers to inhibit use by legitimate users

Viruses and worms are two examples of software attacks inserted into the system by means
of a disk or also across the network. The security mechanisms needed to cope with unwanted
access fall into two broad categories

8

Information Security (Unit-1) Introduction to Information Security

 Placing a gatekeeper function, which includes a password-based login methods that provide access to

only authorized users and screening logic to detect and reject worms, viruses etc

 An internal control, monitoring the internal system activities analyzes the stored information and detects
the presence of unauthorized users or intruders.

Internet Standards and RFC’S

Most of the protocols related to TCP/IP protocol suite are already standardized or under
the process of standardization. An organization known as internet society is responsible for
development and publication of these standards. It is the actually a professional membership
organization that supervises a large in internet development and standardization

An internet society refers to the organization responsible for monitoring and
coordinating internet design, engineering and management. Three organizations under the
internet society are responsible for actual work of standards development & publication

1. INTERNET ARICHITECTURE BOARD (IAB): Responsible for defining the overall architecture of
the internet, providing guidance and broad direction to IETF
2. INETRNET ENGINEERING TASK FORCE (IETF): The protocol engineering and development arm
of the internet
3. INTERNET ENGINEERING STEERING GROUP (IESG): Responsible for technical management of
IETF activities and the internet standards process

Working groups chartered by IETF carry out actual development of new standards
and protocols for the internet as membership is voluntary; any party can enter into working
group will make a draft version made available as an internet draft placed in IETF’s “internet
drafts” online directory. This will remain up to six months, where interested parties may review
& comment on it. During this time, IESG may approve the draft as an RFC or else it is withdrawn
from directory, and a revised edition is published.

9

Information Security (Unit-1) Introduction to Information Security

The IETF is responsible for publishing the RFC’S with approval of IESG. The RFC’S are
working notes of the internet research and development community. The entire activities of
the IETF are categorized into eight areas each having a categorized into eight areas each having
it & numerous working groups

The Standardization Process:

IESG decides which RFC’s become internet standard based on IETF
recommendations. To become a standard, a specification must meet the following criteria.

o BE stable and easily understandable
o Be technically competent

10

Information Security (Unit-1) Introduction to Information Security

o Have multiple, independent and interoperable implementations with substantial
operations experience.

o Enjoy significant public support.
o Be recognizably useful in some or all parts of internet

The RFC publication process is shown below, in which a specification passes through a
sequence of steps called standards track, in order to qualify as a standard. It involves excessive
scrutinizing and testing. The actual process starts after the approval of internet draft
documentation as an RFC by IESG.

For a specification to act as a draft standard it must pass through at least two

non- dependent interoperable implementations for achieving proper operational experience

once, necessary implementations and operational experience is achieved, it can be regarded as

internet standard. Now, this specification is equipped with two numbers, an STD number and

an RFC number .Finally, when a protocol becomes outdated, it is assigned to the historic state.

Internet Standard Categories

All the internet standards fall into two categories

 TECHINICAL SPECIFICATION (TS): TS defines a protocol, service, procedure, convention or format. Most

internet standards are TS‘s.

 APPLICABILITY STATEMENT (AS): AS specifies how, and under what circumstances, one or more TS may
be applied to support a particular internet capability. It identifies one or more

TS’s that are relevant to the capability and may specify values or ranges for particular
parameters associated with a TS or functional subsets of a TS that are relevant for the
capability.

11

Information Security (Unit-1) Introduction to Information Security

Other RFC Types
Some RFC’s exits that can standardize the results of community deliberations regarding

best way to perform some operations or IETF process function. These are known as best
current practices (BCP) whose approval process is similar and it’s a one stage process. A
protocol or other specification that is not considered ready for standardization may be
published as an experimental RFC and after reworking on it, submitted again and when it has
resolved known design choices, is believed to be well understood, has received significant
community review and has got good public community interest to be considered valuable, their
RFC will be designated a proposed standard. Finally, an informational specification is published
for general information of internet community.

Buffer Overflow & Format String Vulnerabilities

Vulnerability: Vulnerability is an inherent weakness in design, configuration, implementation or

management of a network or system that renders it susceptible to a threat. Vulnerabilities are

what make networks susceptible to information loss and downtime. Every network and system

has some kind of vulnerability.

Buffer Overflow: A buffer overflow occurs when a program or process tries to store more
data in a buffer than it was intended to hold. Since buffers are created to contain a finite

amount of data, the extra information can overflow into adjacent buffers, corrupting or

overwriting the valid data held in them. Though this may occur accidentally because of a

programming error, at present it is an increasingly common type of security attack on integrity.

It happens when the attacker intentionally enters more data than a program was

written to handle. The data runs over and overflows the section of valid data like part of

programming instructions, user files, confidential information etc there by enabling the

attacker’s data to overwrite it. This allows an attacker to overwrite data that controls the

program and can take over control of the program to execute the attacker’s code instead of

programmer’s code.

Exploiting the overflowable buffer involves the following tasks

 Finding a way of injecting into the buffer

 Specify a return address where malicious code resides for the program to execute the code

 Determining the payload/code to be executed

12

Information Security (Unit-1) Introduction to Information Security

Buffer Injection Techniques
For creating an exploit, it is important to determine a way of getting a large buffer into

the overflowable buffer. A simple process of filling a buffer over the network

 Injection vector: It refers to the customized operational code needed to monitor and

control an instruction pointer on the remote system. It depends on host and targeted
machine and is used to execute the payload.

 Payload: Something like a virus that can run at anytime, anywhere irrespective of its injection
into a remote machine.

Determining the location of payload
Both injection vector and payload are commonly located in the stack, but the problem

with this approach is that one has to keep track of the payload size and how the payload

interacts with injection vector. For example, collision occurs when payload starts before

injection vector and a jump instruction is included to overcome this which makes the payload

jump over injection code. But, if these problems become too complex, the payload has to be

placed somewhere else.

Any location in the program, where you can store a buffer becomes a candidate for

storing a payload. The main step is to get the processor to start executing that buffer. Some

common places to store payloads include

 Files on disk, which are then loaded into memory

 Environment variables controlled by a local user

 Environment variables passed within a web request

 User-controlled fields within a network protocol

Once the payload is injected, the task is simply to get the instruction pointer to load the

address of payload. This technique of storing the payload somewhere other than stack has

made tight and difficult to exploit buffer overflows very much possible. A single off-by-one

error can still be used to take control of a computer.

Methods to execute payload
There are several techniques that are used to execute payload. These are the ways to

decide what to put into the saved EIP on the stack to make it finally point to our code.

 Direct Jump (Guessing offsets)

Here, an overflow code is instructed to jump directly to a specific location in memory.

No effort to determine the true location of the stack in memory is made. Though it is simple

to use, it has two major drawbacks.

13

Information Security (Unit-1) Introduction to Information Security

 If the address of stack contains a null character, the entire payload has to be placed
before the injection i.e. reducing the available space for payload.

 As the address of a payload is not always constant, it requires initial guessing of the
address to be jumped.

 Blind Return

The ESP register points to the current stack location. Any ‘ret’ instruction will cause the

EIP register to be loaded with whatever is pointed to by ESP. this is called ‘popping’. Any ret

instruction leads to popping of the EIP with top most value on a stack allowing the EIP to

point for a new address. If the attacker is able to inject an initial EIP value that points to a

ret instruction, the value stored at ESP will be loaded into the ESI.

Nothing can be injected into the instruction pointer that will cause a register to be used
for execution. The instruction pointer is made point to a real instruction.

 Pop Return

If the value on the top of the stack does not point to an address within the attacker’s

buffer, the injected EIP can be set to point to a series of pop instructions followed by a ‘ret’.

This causes the stack to be popped a number of times, before a value is used for EIP

register.

This technique is useful when there is an address near the top of stack that points to

within the attacker’s buffer and the attacker just pops down the stack until the useful

address is reached.

 Call Register

If a register is already loaded with an address that points to the payload, the attacker

simply needs to load the EIP to an instruction that performs a “call EDX” or “call EDI” or

equivalent.

Many useful pairs are found by a search of process memory, and can be used from

almost any normal process. As, these are part of kernel interface DLL, they will normally be

at fixed address which can be hand coded. These vary for different versions of windows

depending on the type of service pack applied.

 Push Return
It slightly varies from call register method and it also makes use of the value stored in a

register. If the register is loaded, but the attacker cannot find a call instruction, another

option is to find a “push” followed by a “return”.

Stack Frame:

The term ‘stack frame’ refers to the collection of the entire information related to a

stack of any function. The information includes the arguments that are passed to any function,

the stored EIP along with any other stored registers and local variables. It can be effectively

explained by the ‘call’ and ‘ret’ instructions.

14

Information Security (Unit-1) Introduction to Information Security

 Call Instruction

This instruction is used to change the processor control in such a way that the

control now points to a different piece of code somewhere inside a program, there by

notifying the point where to return after executing the function call. The operations are

 The immediate next instruction after a call is pushed onto the stack to be executed after
returning from function.

 Jump to the address available at the top of a stack.

 Ret Instruction: The return instruction takes the control back to the location immediately after a call
function in the caller. The operations are

 The return address at the top of the stack is popped off

 The address popped off the stack is then jumped

Hence, a combination of ‘push’ and ‘return’ statements allow jumping to specific

portion of code and returning from it after executing it. As the location of the stored EIP is

available onto a stack, writing a popped value at that location is possible.

Computer programs are organized into sub-routines. The program’s main-routine calls

each subroutine which performs its particular function and then returns control to the main

routine. Each subroutine in turn has to save various pieces of information in order to perform

its work. Subroutines use an area of memory called the stack for storing this information. One

of these pieces of information is the memory address to which the subroutine should return

control, when it is finished with its work.

Subroutines also store temporary data on stack. Each time a subroutine is run, the

required memory is allocated on the stack in unit called stack frame. The stack frame includes

space for any buffers the subroutine requires, as well as the calling routines return address.

When the subroutine completes its work, it returns control to the calling routine by jumping the

address stored in stack frame, and the stack frame is deleted.

When a user sends 1000 characters to a 100 characters stack buffer, the extra 900

characters overwrite adjacent memory in the stack frame, overwriting other buffers and the

stack frame’s return address. Now, when the subroutine attempts to return control to the main

program, it jumps to the address that is stored in the return address portion of the stack frame.

Unfortunately, this address has been overwritten by the overflowed buffer and the address is

corrupted. When the program tries to jump to a non-existing address, the program crashes

If the attacker sends 1000 characters that are carefully chosen, he or she can control the

return address. Rather than jumping to a non-existing address, the attacker can instruct the

program to jump to the address of malicious exploit code (payload).

15

Information Security (Unit-1) Introduction to Information Security

Format String Vulnerability

In the second half of the year 2000, a whole new class of vulnerabilities has been

disclosed and caused a wave of exploitable bugs being discovered in all kinds of programs,

ranging from small utilities to big server applications. These are known as ‘format string

vulnerabilities’. A format string vulnerability occurs when programmers pass externally supplied

data to a printf function as or as part of the format string argument.

Format string attacks can be used to crash a program or to execute harmful code. The

problem stems from the use of unfiltered user input as the format string parameter in certain C

functions that perform formatting, such as printf().These are some of the most commonly seen

programming mistakes resulting in exploitable format string vulnerabilities. The first is where a

printf function is called with no separate format string argument, simply a single string

argument. A malicious user may use the %s and %x format tokens, among others, to print data

from the stack or possibly other locations in memory. One may also write arbitrary data to

arbitrary locations using the %n format token, which commands printf() and similar functions to

write the number of bytes formatted to an address stored on the stack. A typical exploit uses a

combination of these techniques to force a program to overwrite the address of a library

function or the return address on the stack with a pointer to some malicious shell code.

Format string bugs most commonly appear when a programmer wishes to print a string

containing user supplied data. The programmer may mistakenly write printf(buffer) instead of

printf("%s", buffer). The first version interprets buffer as a format string, and parses any

formatting instructions it may contain. The second version simply prints a string to the screen,

as the programmer intended.

Format string vulnerability attacks fall into three categories: denial of service, reading and
writing.

 Format string vulnerability denial of service attacks are characterized by utilizing
multiple instances of the %s format specifier to read data off of the stack until the
program attempts to read data from an illegal address, which will cause the program to
crash.

 Format string vulnerability reading attacks typically utilize the %x format specifier to
print sections of memory that we do not normally have access to. This is a serious
problem and can lead to disclosure of sensitive information. For example, if a program
accepts authentication information from clients and does not clear it immediately after
use, these vulnerabilities can be used to read it.

16

Information Security (Unit-1) Introduction to Information Security

 Format string vulnerability writing attacks utilize the %d, %u or %x format specifiers to
overwrite the Instruction Pointer and force execution of user-supplied shell code. This is
exploited using single write method or multiple writes method.

Session Hijacking:

Session Hijacking is a common-cum valiant security threat to which most systems are
prone to. It refers to the exploitation of a valid computer session to gain unauthorized access to
information or services in a computer system. Sensitive user information is constantly transported

between sessions after authentication and hackers put their best efforts to steal them. Session
hijack is a process whereby the attacker inserts themselves into an existing communication
session between two computers. The three main protocols that manage the data flow on which
session hijacking occurs are TCP, UDP, and HTTP.

Session hijacking can be done at two levels: Network Level and Application Level.
Network level hijacking involves TCP and UDP sessions, whereas Application level session hijack
occurs with HTTP sessions. The network level refers to the interception and tampering of
packets transmitted between client and server during a TCP or UDP session. The application
level refers to obtaining session IDs to gain control of the HTTP user session as defined by the
web application. In the application level, the session hijacker not only tries to hijack existing
sessions, but also tries to create new sessions using stolen data.

TCP Session Hijacking

TCP guarantees delivery of data and also guarantees that packets will be delivered in the

same order in which they were sent. In order to guarantee that packets are delivered in the

right order, TCP uses acknowledgement (ACK) packets and sequence numbers to create a “full

duplex reliable stream connection between two end points,” with the end points referring to

the communicating hosts. The connection between the client and the server begins with a

three-way handshake.

Fig: The three way handshake method for session establishment and sending Data over TCP

Information Security (Unit-1) Introduction to Information Security

 Client sends a synchronization (SYN) packet to the server with initial sequence number X.

 Server responds by sending a SYN/ACK packet that contains the server's own sequence
number p and an ACK number for the client's original SYN packet. This ACK number
indicates the next sequence number the server expects from the client

 Client acknowledges receipt of the SYN/ACK packet by sending back to the server an ACK packet
with the next sequence number it expects from the server, which in this case is P+1.

After the handshake, it’s just a matter of sending packets and incrementing the sequence
number to verify that the packets are getting sent and received.

The goal of the TCP session hijacker is to create a state where the client and server are

unable to exchange data, so that he can forge acceptable packets for both ends, which mimic

the real packets. Thus, attacker is able to gain control of the session. At this point, the reason

why the client and server will drop packets sent between them is because the server’s

sequence number no longer matches the client’s ACK number and likewise, the client’s

sequence number no longer matches the server’s ACK number. To hijack the session in the TCP

network the hijacker should employ following techniques:

 IP Spoofing: IP spoofing is “a technique used to gain unauthorized access to computers,
whereby the intruder sends messages to a computer with an IP address indicating that the
message is coming from a trusted host.” Once the hijacker has successfully spoofed an IP
address, he determines the next sequence number that the server expects and uses it to
inject the forged packet into the TCP session before the client can respond. By doing so, he
creates the “desynchronized state.”

 Blind Hijacking: If source routing is disabled, the session hijacker can also employ blind
hijacking where he injects his malicious data into intercepted communications in the TCP
session. It is called “blind” because the hijacker can send the data or commands, but cannot
see the response. The hijacker is basically guessing the responses of the client and server.

Fig: Blind Injection technique

 Man in the Middle attack (packet sniffing): This technique involves using a packet sniffer that
intercepts the communication between the client and server. With all the data

18

Information Security (Unit-1) Introduction to Information Security

between the hosts flowing through the hijacker’s sniffer, he is free to modify the content of

the packets. The trick to this technique is to get the packets to be routed through the

hijacker’s host.

UDP Session Hijacking

UDP which stands for User Datagram Protocol is defined as “a connectionless protocol

that, like TCP, runs on top of IP networks. Unlike TCP/IP, UDP/IP provides very few error

recovery services, offering instead a direct way to send and receive datagram’s over an IP

network.” Therefore, the delivery, integrity, non-duplication and ordering are not guaranteed

i.e. it does not use packet sequencing and synchronizing. UDP doesn’t use sequence numbers

like TCP. It is mainly used for broadcasting messages across the network or for doing DNS

queries.

Fig: Session Hijacking over UDP

Hijacking a session over User Datagram Protocol (UDP) is exactly the same as over TCP,

except that UDP attackers do not have to worry about the overhead of managing sequence

number and other TCP mechanisms. Since UDP is connectionless, injecting data into session

without being detected is extremely easy. If the “man in the middle” situation exists, this can be

very easy for the attacker, since he can also stop the server’s reply from getting to the client in

the first place

To defend a network against these attacks, a defender has to implement both security

measures at Application level and Network level. Network level hijacks can be prevented by

ciphering the packets so that the hijacker cannot decipher the packet headers, to obtain any

information which will aid in spoofing. This encryption can be provided by using protocols such

as IPSEC, SSL, SSH etc. To prevent your Application session to be hijacked it is recommended to

use Strong Session ID’s so that they cannot be hijacked or deciphered at any cost.

19

Information Security (Unit-1) Introduction to Information Security

Route Table Modification:

An attacker would be able to put himself in such a position to block packets by

modifying routing tables, so that packets flow through a system he has control of (Layer 3

redirection), by changing bridge tables by playing games with spanning-tree frames (Layer 2

redirection), or by rerouting physical cables so that the frames must flow through the attacker’s

system (Layer 1 redirection). Most of the time, an attacker will try to change route tables

remotely. There has been some research in the area of changing route tables on a mass scale by

playing games with the Border Gateway Protocol (BGP) that most Internet service providers

(ISPs) use to exchange routes with each other.

A more locally workable attack might be to spoof Internet Control Message Protocol

(ICMP) and redirect packets to fool some hosts into thinking that there is a better route via the

attacker’s IP address. Many OS’s accept ICMP redirects in their default configuration. Unless,

the connection is to be broken entirely (or proxy it in some way), the packets have to be

forwarded back to the real router, so they can reach their ultimate destination. When that

happens, the real router is likely to send ICMP redirect packets to the original host, too,

informing it that there is a better route. To attempt that sort of attack, it is necessary to keep

up the flow of ICMP redirect messages.

If the attacker has managed to change route tables to get packets to flow through his

system, some of the intermediate routers will be aware of the route change, either because of

route tables changing or possibly because of an Address Resolution Protocol (ARP) table change

.The end nodes would not normally be knowledgeable to this information, if there are at least a

few routers between the two nodes. Possibly the nodes could discover the change via a

traceroute-style utility, unless the attacker has planned for that and programmed his “router”

to account for it (by not sending the ICMP unreachables and not decrementing the Time-to-Live

[TTL] counter on the IP packets).

ARP Attacks

Another way to make sure that your attacking machine gets all the packets going

through it is to modify the ARP tables on the victim machine(s). An ARP table controls the

Media Access Control (MAC)-address-to-IP-address mapping on each machine. ARP is designed

to be a dynamic protocol, so as new machines are added to a network or existing machines get

new MAC addresses for whatever reason, the rest update automatically in a relatively short

period of time. There is absolutely no authentication in this protocol.

Address Resolution Protocol (ARP) spoofing, also known as ARP poisoning or ARP
Poison Routing (APR), is a technique used to attack an Ethernet wired or wireless network. ARP

20

Information Security (Unit-1) Introduction to Information Security

Spoofing allows an attacker to sniff data frames on a local area network (LAN), modify the

traffic, or stop the traffic altogether. The attack can only be used on networks that actually

make use of ARP and not another method of address resolution.

The principle of ARP spoofing is to send fake, or "spoofed", ARP messages to an

Ethernet LAN. Generally, the aim is to associate the attacker's MAC address with the IP address

of another node (such as the default gateway). Any traffic meant for that IP address would be

mistakenly sent to the attacker instead. The attacker could then choose to forward the traffic to

the actual default gateway (passive sniffing) or modify the data before forwarding it (man-in-

the-middle attack). The attacker could also launch a denial-of-service attack against a victim by

associating a nonexistent MAC address to the IP address of the victim's default gateway. ARP

spoofing attacks can be run from a compromised host or from an attacker's machine that is

connected directly to the target Ethernet segment. Also spoofed ARP replies are sent at an

extremely rapid rate to the switch making its MAC table to overflow and sometimes resulting in

switches being reverted to broadcast mode, allowing the sniffing to be done. The best defense

against ARP attacks are having a static ARP, DHCP Snooping (access control based on IP, MAC,

and port) and detection. Some detection techniques are ARPWatch (Free UNIX Program),

Reverse ARP (RARP- used to detect MAC cloning) and Promiscuous Mode Sniffing.

Man in the Middle Attacks

In cryptography, the man-in-the-middle attack (often abbreviated MITM), is a form of

active eavesdropping in which the attacker makes independent connections with the victims

and relays messages between them, making them believe that they are talking directly to each

other over a private connection, when in fact the entire conversation is controlled by the

attacker. The attacker must be able to intercept all messages going between the two victims

and inject new ones, which is straightforward in many circumstances (ex: unencrypted Wi-Fi

access point).

This is not easy in the Internet because of hop-by-hop routing, unless you control one of the

backbone hosts or source routing is used. This can also be done combined with IP source

routing option. IP source routing is used to specify the route in the delivery of a packet, which is

independent of the normal delivery mechanisms. If the traffic can be forced through specific

routes (=specific hosts), and if the reverse route is used to reply traffic, a host on the route can

21

Information Security (Unit-1) Introduction to Information Security

easily impersonate another host. Once in the middle, the attacker can perform injection, key
manipulation, downgrade attack and filtering.

Injection implies possibility of adding packets to an already established connection or

modifying sequence numbers, maintaining connection synchronization while injecting packets.

Key manipulation is possible in protocols like SSHv1(modification of public key exchanged by

client and server), IPSEC, HTTPS (issuing fake certificates to clients relying on browser

misconfiguration). Downgrade attacks involve forcing a client to initialize a SSH1 connection

rather than SSH2 or sometimes blocking the key material exchanged in IPSEC. In filtering

attacks, the attacker can modify the payload of packets by recalculating the checksum or can

create filters in the path and in some cases like full-duplex can change the length of payload.

Various kinds of MITM attacks in different scenarios are given below:

22

Information Security (Unit-1) Introduction to Information Security

Assignment Questions

1) a) Define a Security attack. Explain in detail about the various types of attacks an Internetwork is
vulnerable to.
b) Write about Man-in-the-middle attacks.

2) a) “Gaining control over the Routing tables at layer 3 is one of the attacks” – explain how Route

tables modification is crucial.
b) Explain how Buffer overflow is created for any known platforms (eg., WIN- DOWS NT / LINUX).

3) a) “Internetwork security is both fascinating and complex” - Justify the statement with valid

reasoning.
b) Explain the terms related to Buffer overflow:

i. Stack dumping
ii. Execute Payload.

4) a) Explain about how the Internet standards and RFCs.

b) Explain how Address Resolution Protocol table becomes a victim for attacks.

5) a) Describe the various Security Services.

b) Compare TCP session hijacking and UDP hijacking.

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Unit-2

CONVENTIONAL ENCRYPTION PRINCIPLES, CONVENTIONAL ENCRYPTION ALGORITHMS, CIPHER BLOCK
MODES OF OPERATION, LOCATION OF ENCRYPTION DEVICES, KEY DISTRIBUTION APPROACHES OF
MESSAGE AUTHENTICATION, SECURE HASH FUNCTIONS AND HMAC

Conventional Encryption principles

A Symmetric encryption scheme has five ingredients

1. Plain Text: This is the original message or data which is fed into the algorithm as
input.

2. Encryption Algorithm: This encryption algorithm performs various substitutions and
transformations on the plain text.

3. Secret Key: The key is another input to the algorithm. The substitutions and
transformations performed by algorithm depend on the key.

4. Cipher Text: This is the scrambled (unreadable) message which is output of the

encryption algorithm. This cipher text is dependent on plaintext and secret key. For a

given plaintext, two different keys produce two different cipher texts.

5. Decryption Algorithm: This is the reverse of encryption algorithm. It takes the cipher
text and secret key as inputs and outputs the plain text.

1

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Two main requirements are needed for secure use of conventional encryption:

(i). A strong encryption algorithm is needed. It is desirable that the algorithm should be

in such a way that, even the attacker who knows the algorithm and has access to one or

more cipher texts would be unable to decipher the ciphertext or figure out the key.

(ii).The secret key must be distributed among the sender and receiver in a very secured

way. If in any way the key is discovered and with the knowledge of algorithm, all

communication using this key is readable.

The important point is that the security of conventional encryption depends on

the secrecy of the key, not the secrecy of the algorithm i.e. it is not necessary to keep

the algorithm secret, but only the key is to be kept secret. This feature that algorithm

need not be kept secret made it feasible for wide spread use and enabled

manufacturers develop low cost chip implementation of data encryption algorithms.

With the use of conventional algorithm, the principal security problem is maintaining

the secrecy of the key.

Cryptography

A cipher is a secret method of writing, as by code. Cryptography, in a very broad

sense, is the study of techniques related to aspects of information security. Hence

cryptography is concerned with the writing (ciphering or encoding) and deciphering

(decoding) of messages in secret code. Cryptographic systems are classified along three

independent dimensions:

1. The type of operations used for performing plaintext to ciphertext

All the encryption algorithms make use of two general principles; substitution and

transposition through which plaintext elements are rearranged. Important thing is that

no information should be lost.
2. The number of keys used

If single key is used by both sender and receiver, it is called symmetric, single-key,

secret-key or conventional encryption. If sender and receiver each use a different key,

then it is called asymmetric, two-key or public-key encryption.
3. The way in which plaintext is processed

A block cipher process the input as blocks of elements and generated an output block

for each input block. Stream cipher processes the input elements continuously,

producing output one element at a time as it goes along.

2

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Substitution: Method by which units of plaintext are replaced with ciphertext according to
a regular system.

Transposition: Here, units of plaintext are rearranged in a different and usually quite
complex order, but the units themselves are left unchanged.

Cryptanalysis

The process of attempting to discover the plaintext or key is known as cryptanalysis. It is

very difficult when only the ciphertext is available to the attacker as in some cases even the

encryption algorithm is not known. The most common attack under these circumstances is

brute-force approach of trying all the possible keys. This attack is made impractical when

the key size is considerably large. The table below gives an idea on types of attacks on

encrypted messages.

Cryptology covers both cryptography and cryptanalysis. Cryptology is a constantly evolving

science; ciphers are invented and, given time, are almost certainly breakable. Cryptanalysis

is the best way to understand the subject of cryptology. Cryptographers are constantly

searching for the perfect security system, a system that is both fast and hard and a system

that encrypts quickly but is hard or impossible to break. Cryptanalysts are always looking for

ways to break the security provided by a cryptographic system, mostly though

mathematical understanding of the cipher structure.
3

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Cryptography can be defined as the conversion of data into a scrambled code that can be
deciphered and sent across a public or a private network.

 A Ciphertext-only attack is an attack with an attempt to decrypt ciphertext when only the ciphertext itself
is available.

 A Known-plaintext attack is an attack in which an individual has the plaintext samples
and its encrypted version(ciphertext) thereby allowing him to use both to reveal further
secret information like the key

 A Chosen- plaintext attack involves the cryptanalyst be able to define his own plaintext, feed it into the
cipher and analyze the resulting ciphertext.

 A Chosen-ciphertext attack is one, where attacker has several pairs of plaintext-ciphertext
and ciphertext chosen by the attacker.

An encryption scheme is unconditionally secure if the ciphertext generated by the scheme

does not contain enough information to determine uniquely the corresponding plaintext,

no matter how much ciphertext and time is available to the opponent. Example for this type

is One-time Pad.

An encryption scheme is computationally secure if the ciphertext generated by the scheme
meets the following criteria:
 Cost of breaking cipher exceeds the value of the encrypted information.

 Time required to break the cipher exceeds the useful lifetime of the information.

The average time required for exhaustive key search is given below:

Key Size Number of Time required at 1 Time required at

(bits) Alternative Keys decryption/µs 10
6
 decryptions/µs

32 232 = 4.3 10
9
 2

31
 µs = 35.8 minutes 2.15 milliseconds

56 256 = 7.2 10
16

 2
55

 µs = 1142 years 10.01 hours

128 2128 = 3.4 10
38

 2127 µs = 5.4 10
24

 years 5.4 10
18

 years

168 2168 = 3.7 10
50

 2167 µs = 5.9 10
36

 years 5.9 10
30

 years

4

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Substitution Encryption Techniques

These techniques involve substituting or replacing the contents of the plaintext by other letters,
numbers or symbols. Different kinds of ciphers are used in substitution technique.

Caesar Ciphers:

It is the oldest of all the substitution ciphers. A Caesar cipher replaces each letter of the
plaintext with an alphabet. Two examples can be given:

A B C D E F G H I J K L M N O P Q R S T U V W X Y
Z Choose k, Shift all letters by k

 For example, if k = 5

 A becomes F, B becomes G, C becomes H, and so on…
Mathematically give each letter a number,
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

 then have Caesar cipher as:

c = E(p) = (p + k) mod (26)

p = D(c) = (c – k) mod (26)

With a Caesar cipher, there are only 26 possible keys, of which only 25 are of any use, since mapping A to A etc
doesn't really obscure the message!

Monoalphabetic Ciphers :

Here, Plaintext characters are substituted by a different alphabet stream of characters

shifted to the right or left by n positions. When compared to the Caesar ciphers, these

monoalphabetic ciphers are more secure as each letter of the ciphertext can be any

permutation of the 26 alphabetic characters leading to 26! or greater than 4 x 10
26

 possible

keys. But it is still vulnerable to cryptanalysis, when a cryptanalyst is aware of the nature of the

plaintext, he can find the regularities of the language. To overcome these attacks, multiple

substitutions for a single letter are used. For example, a letter can be substituted by different

numerical cipher symbols such as 17, 54, 69….. etc. Even this method is not completely secure

as each letter in the plain text affects on letter in the ciphertext.

Or, using a common key which substitutes every letter of the plain text.
The key ABCDEFGHIIJ KLMNOPQRSTUVWXYZ

QWERTYUIIOPAS DFGHJ KLZXCV BNM
Would encrypt the message II think therefore II am

into OZIIOFAZIITKTYGKTOQD

5

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

But any attacker would simply break the cipher by using frequency analysis by observing the

number of times each letter occurs in the cipher text and then looking upon the English letter

frequency table. So, substitution cipher is completely ruined by these attacks. Monoalphabetic

ciphers are easy to break as they reflect the frequency of the original alphabet. A

countermeasure is to provide substitutes, known as homophones for a single letter.

Playfair Ciphers:

It is the best known multiple –letter encryption cipher which treats digrams in the plaintext as

single units and translates these units into ciphertext digrams. The Playfair Cipher is a digram

substitution cipher offering a relatively weak method of encryption. It was used for tactical

purposes by British forces in the Second Boer War and in World War I and for the same purpose

by the Australians and Germans during World War II. This was because Playfair is reasonably

fast to use and requires no special equipment. A typical scenario for Playfair use would be to

protect important but non-critical secrets during actual combat. By the time the enemy

cryptanalysts could break the message, the information was useless to them.

It is based around a 5x5 matrix, a copy of which is held by both communicating

parties, into which 25 of the 26 letters of the alphabet (normally either j and i are represented

by the same letter or x is ignored) are placed in a random fashion.

For example, the plain text is Shi Sherry loves Heath Ledger and the agreed key is sherry.
The matrix will be built according to the following rules.
 in pairs,

 without punctuation,

 All Js are replaced with Is.

SH IS HE RR YL OV ES HE AT HL ED GE R
 Double letters which occur in a pair must be divided by an X or a Z.

 E.g. LI TE RA LL Y

LI TE RA LX LY

SH IS HE RX RY LO VE SH EA TH LE DG ER
The alphabet square is prepared using, a 5*5 matrix, no repetition letters, no Js and key
is written first followed by the remaining alphabets with no i and j.

S H E R Y
A B C D F
G I K L M
N O P Q T
U V W X Z

For the generation of cipher text, there are three rules to be followed by each pair of
letters.

6

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

 letters appear on the same row： replace them with the letters to their immediate right

respectively

 letters appear on the same column： replace them with the letters immediately below

respectively

 not on the same row or column： replace them with the letters on the same row

respectively but at the other pair of corners of the rectangle defined by the original pair.

Based on the above three rules, the cipher text obtained for the given plain text is

HE GH ER DR YS IQ WH HE SC OY KR AL RY

Another example which is simpler than the above one can be given

as: Here, key word is playfair. Plaintext is Hellothere

hellothere becomes-----he lx lo th er ex .

Applying the rules again, for each pair,

If they are in the same row, replace each with the letter to its right (mod 5) he

KG

If they are in the same column, replace each with the letter below it (mod 5) lo

RV

Otherwise, replace each with letter we’d get if we swapped their column indices lx

YV

 p l a y

i r b c

e g h k

n o q s
u v w x

f

d

m

t

z

So the cipher text for the given plain text is KG YV RV QM GI KU

To decrypt the message, just reverse the process. Shift up and left instead of

down and right. Drop extra x’s and locate any missing I’s that should be j’s. The message will

be back into the original readable form. no longer used by military forces because of the

advent of digital encryption devices. Playfair is now regarded as insecure for any purpose

because modern hand-held computers could easily break the cipher within seconds.

Hill Cipher:

It is also a multiletter encryption cipher. It involves substitution of ‘m’ ciphertext letters

for ‘m’ successive plaintext letters. For substitution purposes using ‘m’ linear equations,

each of the characters are assigned a numerical values i.e. a=0, b=1, c=2, d=3,…….z=25.

For example if m=3, the system can be defined
as: c1 = (k11p1 + k12p2 + k13p3) mod 26
c2 = (k21p1 + k22p2 + k23p3) mod 26

c3 = (k31p1 + k32p2 + k33p3) mod 26

If we represent in matrix form, the above statements as matrices and column vectors:

7

Information Security Unit-2 Symmetric Encryption, DES, AES

 Message Authentication, Hash algorithms, HMAC

c1 k11 k12 k13 p1

c2 = k21 k22 k23 p2 mod 26

c3 k31 k32 k33 p3
Thus, C = KP mod26, where C= Column vectors of length 3

P = Column vectors of length 3
K = 3x3 encryption key matrix.

For decryption process, inverse of matrix K i.e. K
-1

 is required which is defined by the

equation KK
-1

 = K-
1
K = I, where I is the identity matrix that contains only 0’s and 1’s as

its elements. Plaintext is recovered by applying K-
1
 to the cipher text. It is expressed as

C = EK(P) = KP mod26 P

= DK(C) = K
-1

C mod26.

= K
-1

KP = IP = P

Example: The plain text is I can’t do it and the size of m is 3 and key K is chosen as

following:

The encryption process is carried out as follows

So, the encrypted text will be given as

 EOM TMY SVJ

8

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

The main advantages of hill cipher are given below:
 It perfectly hides single-letter frequencies.

 Use of 3x3 Hill ciphers can perfectly hide both the single letter and two-letter frequency information.

 Strong enough against the attacks made only on the cipher text.

But, it still can be easily broken if the attack is through a known plaintext.

Polyalphabetic Ciphers

In order to make substitution ciphers more secure, more than one alphabet can be used.

Such ciphers are called polyalphabetic, which means that the same letter of a message can

be represented by different letters when encoded. Such a one-to-many correspondence

makes the use of frequency analysis much more difficult in order to crack the code. We

describe one such cipher named for Blaise de Vigenere a 16-th century Frenchman.

The Vigenere cipher is a polyalphabetic cipher based on using successively shifted

alphabets, a different shifted alphabet for each of the 26 English letters. The procedure is

based on the tableau shown below and the use of a keyword. The letters of the keyword

determine the shifted alphabets used in the encoding process.

9

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

For the message COMPUTING GIVES INSIGHT and keyword LUCKY we proceed by repeating the
keyword as many times as needed above the message, as follows.

Encryption is simple: Given a key letter x and a plaintext letter y, the ciphertext letter is at the

intersection of the row labeled x and the column labeled y; so for L, the ciphertext letter would

be N. So, the ciphertext for the given plaintext would be given as:

Decryption is equally simple: The key letter again identifies the row and position of

ciphertext letter in that row decides the column and the plaintext letter is at the top of that

column. The strength of this cipher is that there are multiple ciphetext letters for each

plaintext letter, one for each unique letter of the keyword and thereby making the letter

frequency information is obscured. Still, breaking this cipher has been made possible

because this reveals some mathematical principles that apply in cryptanalysis. To overcome

the drawback of the periodic nature of the keyword, a new technique is proposed which is

referred as an autokey system, in which a key word is concatenated with the plaintext itself

to provide a running key. For ex

In the above example, the key would be luckycomputinggivesin

Still, this scheme is vulnerable to cryptanalysis as both the key and plaintext

share the same frequency distribution of letters allowing a statistical technique to be

applied. Thus, the ultimate defense against such a cryptanalysis is to choose a keyword that

is as long as plaintext and has no statistical relationship to it. A new system which works on

binary data rather than letters is given as

Ci = pi

i where,

pi = ith binary digit of plaintext

ki = ith binary digit of key

Ci= ith binary digit of ciphertext

= exclusive-or operation.

Because of the properties of XOR, decryption is done by performing the same bitwise
operation.

pi = Ci i
A very long but, repeation key word is used making cryptanalysis difficult.

10

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Pigpen Cipher

Pigpen cipher is a variation on letter substitution. Alphabets are arranged as follows:

Alphabets will be represented by the corresponding diagram. E.g., WAG would be

This is a weak cipher.

Transposition techniques

A transposition cipher is a method of encryption by which the positions held by units of

plaintext (which are commonly characters or groups of characters) are shifted according to

a regular system, so that the ciphertext constitutes a permutation of the plaintext. That is,

the order of the units is changed. Transposition ciphers encrypt plaintext by moving small

pieces of the message around. Anagrams are a primitive transposition cipher. This table

shows "VOYAGER" being encrypted with a primitive transposition cipher where every two

letters are switched with each other:

 V O Y A G E R

 O V A Y E G R

11

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Another simple example for transposition cipher is the rail fence technique, in which the

plaintext is written down as a sequence of diagonals and then read off as a sequence of

rows.
For example, write the message “meet me after the toga party” out as:

m e m a t r h t g p r y

e t e f e t e o a a t

 giving ciphertext : MEMATRHTGPRYETEFETEOAAT

The following example shows how a pure permutation cipher could work: You write your

plaintext message along the rows of a matrix of some size. You generate ciphertext by

reading along the columns. The order in which you read the columns is determined by the

encryption key:

ciphertext: TITESMAIRDEMHHEENOOYETGTI
The cipher can be made more secure by performing multiple rounds of such permutations.

12

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Feistel Cipher Structure

Most symmetric block ciphers are based on a Feistel Cipher Structure. It was first described

by Horst Feistel of IBM in 1973 and is still forms the basis for almost all conventional

encryption schemes. It makes use of two properties namely diffusion and confusion;

identified by Claude Shannon for frustrating statistical cryptanalysis. Confusion is basically

defined as the concealment of the relation between the secret key and the cipher text. On

the other hand, diffusion is regarded as the complexity of the relationship between the

plain text and the cipher text.

13

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

The function of Feistel Cipher is shown in the above figure and can be explained by
following steps:
 The input to the encryption algorithm is a plaintext block of length 2w bits and a key K.

 The plaintext block is divided into two halves: Li and Ri.

 The two halves pass through n rounds of processing and then combine to produce the cipher text block

 Each Round i has inputs Li-1 and Ri-1, derived from the previous round, as well as a
unique subkey Ki generated by a sub-key generation algorithm.

 All rounds have the same structure which involves substitution (mapping) on left half of data, which is
done by applying a round function F to right half of data and then taking

XOR of the output of that function and left half of data. The round function F is common

to every round but parameterized by round subkey Ki.

 Then a permutation is performed that consists of interchange of the two halves of data.

For each round , compute

. Then the ciphertext is (Rn + 1,Ln + 1).

Decryption of a ciphertext (Rn + 1,Ln + 1) is accomplished by computing for

. Then (L0,R0) is the plaintext again.

The structure is a particular form of substitution-permutation network (SPN) proposed by

Shannon. The realization or development of a Feistel encryption scheme depends on the

choice of the following parameters and design features:

• Block size: larger block sizes mean greater security but slower processing. Block size of
64 bits has been nearly universal in block cipher design.

• Key Size: larger key size means greater security but slower processing. Most common

key length in modern algorithms is 128 bits.

• Number of rounds: multiple rounds offer increasing security but slows cipher. Typical
size is 16 rounds.

• Subkey generation algorithm: greater complexity will lead to greater difficulty of

cryptanalysis.
• Round Function: greater complexity will make cryptanalysis harder.

• Fast software en/decryption & ease of analysis: are more recent concerns for practical

use and testing.

14

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Feistel Cipher Decryption

The process of decryption with a Fiestel cipher is same as the encyption process. Use the

ciphertext as input to the algorithm, but use the subkeys Ki in the reverse order. Use Kn in the

first round and Kn-1 in the second round and so on until k1 is used in the last round. Main
advantage is we need not implement two different algorithms for encryption and decryption.

The Fiestel cipher has the advantage that encryption and decryption operations are

very similar, even identical in some cases requiring only a reversal in the key schedule.

Therefore, the size of the code or circuitry required to implement such a cipher is nearly halved.

15

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Conventional Encryption Algorithms

Simplified DES

S-DES is a reduced version of the DES algorithm. It has similar properties to DES but

deals with a much smaller block and key size (operates on 8-bit message blocks with a 10-

bit key). The S-DES decryption algorithm takes an 8-bit block of ciphertext and the same 10-

bit key used to produce that ciphertext as input and produces the original 8-bit block of

plaintext. S-DES scheme is shown below:

The encryption algorithm involves five functions: and initial permuatation(IP), a complex

function labeled fk, which involves both permutations and substitution operations and
depends on a key input, a single permutation function (SW) that switches the two halves of

the data, the function fk again and finally a permutation function that is inverse of the IP i.e.

IP
-1

.

16

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

As shown in figure, the function fk takes the data from encryption function along with 8-

bit key. The key is choosen to be 10-bit length from which two 8-bit subkeys are generated.
The initial 10-bit key is subjected to a permutation (P10) followed by a shift operation. The
output of this shift operation then passes through a permutation function that produces an

8-bit output (P8) for the first key (k1) and also feeds into another shift and another instance

of P8 to produce the second subkey (k2). The encryption algorithm can be written as:

Ciphertext = IP
-1

 (f k2(SW(f k1(IP(plaintext)))))

Where K1 = P8(shift(p10(key)))

K2 = P8(shift(shift(p10(key))))
Decryption is also shown in the above figure and can be given as:

Plaintext = IP
-1

 (f k1(SW(f k2(IP(ciphertext)))))

Key Generation:
The key generation process is shown below:

As shown above, a 10-bit key shared between sender and receiver is used and fist passed
through a permutation P10, Where P10 is a permutation with table:

P10
3 5 2 7 4 10 1 9 8 6

17

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

LS-1 is a circular left shift of 1 bit position, and LS-2 is a circular left shift of 2 bit positions.

P8 is another permutation which picks out and permutes 8 of the 10 bits according to the

following rule:

P8
6 3 7 4 8 5 10 9

The result is subkey 1 (K1) and then the outputs from the two LS-1 functions are taken
and a circular left shift of 2 bit positions is performed on each string and then P8 is

applied again to produce K2.

S-DES Encryption:

18

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

As shown above, the input to algorithm is an 8-bit block of plaintext which is permuted

using the IP function. The inverse to this function IP
-1

 is applied towards the end of

algorithm. IP is the initial permutation and IP
-1

 is its inverse.

IP
2 6 3 1 4 8 5 7

 IP
-1

4 1 3 5 7 2 8 6

The function fk

It is the most complex component of S-DES. Function fK consists of a

combination of permutation and substitution functions.

fK(L, R) = (L F(R, SK), R)

where, SK is a subkey (i.e. K1 or K2), L and R denote the leftmost and rightmost 4 bits of the

8-bit input fK and let F be a mapping function from 4-bit strings to 4-bit strings. The first
operation is expansion/permutation operation given by:

E/P
4 1 2 3 2 3 4 1

S0 and S1 are to S-boxes operates according to the following tables:

S0:

1 0 3 2

3 2 1 0

0 2 1 3

3 1 3 2

S1:

0 1 2 3

2 0 1 3

3 0 1 0

2 1 0 3

And P4 would be another permutation.

 P4

2 3 4 1

The output of P4 would be the output of function F.

19

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

The Switch Function:

This function interchanges the left and right 4 bits so that the second instance of fK

operates on a different 4 bits. For second instance all other parameters remain same, but the

key is K2. The S-boxes operates as follows:- The first and fourth input bits are treated as 2-bit

numbers that specify a row of the S-box, and the second and third input bits specify a column of
S-box. The entry in that row and column in base2 is the 2-bit output.

Data Encryption Standard

In 1974, IBM proposed "Lucifer", an encryption algorithm using 64-bit keys. Two years

later (1977), NBS (now NIST) in consultation with NSA made a modified version of that

algorithm into a standard. DES uses the two basic techniques of cryptography - confusion

and diffusion. At the simplest level, diffusion is achieved through numerous permutations

and confusion is achieved through the XOR operation and the S-Boxes. This is also called an

S-P network The DES encryption scheme can be explained by the following figure

The plain text is 64 bits in length and the key in 56 bits in length. Longer plain text amounts

are processed in 64-bit blocks. The main phases in the left hand side of the above figure i.e.

processing of the plain text are,

 Initial Permutation (IP): The plaintext block undergoes an initial permutation. 64 bits of the block are
permuted.

20

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

 A Complex Transformation: 64 bit permuted block undergoes 16 rounds of complex transformation.

Subkeys are used in each of the 16 iterations.

 32-bit swap: The output of 16
th

 round consists of 64bits that are a function of input
plain text and key.32 bit left and right halves of this output is swapped.

 Inverse Initial Permutation (IP
-1

): The 64 bit output undergoes a permutation that is
inverse of the initial permutation.

On the right hand side part of the figure, the usage of the 56 bit key is shown.

Initially the key is passed through a permutation function. Now for each of the 16 iterations,

a new subkey (Ki) is produced by combination of a left circular shift and a permutation

function which is same for each iteration. A different subkey is produced because of

repeated shifting of the key bits.

The following figure shows a closer view of algorithms for a single iteration. The 64bit

permuted input passes through 16 iterations, producing an intermediate 64-bit value at the

conclusion of each iteration.

The left and right halves of each 64 bit intermediate value are treated as separated 32-bit

quantities labeled L (left) and R (Right). The overall processing at each iteration is given by

following steps, which form one round in an S-P network.

21

Information Security Unit-2 Symmetric Encryption, DES, AES

Message Authentication, Hash algorithms, HMAC

Li = Ri-1.

Ri = L i-1 F(R i-1, Ki)
Where Function F can be described as P(S(E(R(i-1)) K(i)))

The left hand output of an iteration (Li) is equal to the right hand input to that iteration Ri-1.

The right hand output Ri is exclusive OR of Li-1 and a complex function F of Ri-1 and Ki. The

fucntion F can be depicted by the following figure. S1, S2-----S8 represent the ”S-boxes” ,

which maps each combination of 48 input bits into a particular 32 bit pattern. For the

generation of subkey of length 48 bits, a 56bit key is used which is first passed through a

permutation funciton and then halved to get two 28 bit quantities labeled C0 and D0. At

each iteration, these two C and D are subjected to a circular left shift or rotation of 1 or 2

bits. These shifted values serve as input to the next iteration and also to another

permutation function which produces a 48-bit output. This output is fed as input to function

F(R i-1, Ki).

The first and last bits of the input to the box Si form a 2-bit binary number to select one of

four substitutions defined by the four rows in the table for Si. The middle 4-bits select a

particular column. The decimal value in the cell selected by the row and column is

converted to its 4-bit representation to produce the output.

22

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

The substitution consists of a set of eight S-boxes, each of which accepts 6 bits as input and

produces 4 bits as output. The process of decryption with DES is essentially the same as the

encryption process: no different algorithm is used. The ciphertext is used as input to the

DES algorithm and the keys are used in the reverse order i.e. K16 in the first iteration, K15 on

the second iteration and so on until k1 is used on the sixteenth and last iteration.

Strength of DES:

Avalanche Effect: An effect in DES and other secret key ciphers where each small change in

plaintext implies that somewhere around half the ciphertext changes. The avalanche effect

makes it harder to successfully cryptanalyze the ciphertext. DES exhibits a strong Avalanche

effect.

Concern about the strength of DES falls into two categories i.e. strength of algorithm

itself and use of 56- bit key. Though many attempts were made over the years to find and

exploit weaknesses in the algorithm, none of them were successful in discovering any fatal

weakness in DES. A serious concern is with the key size as the time passed the security in

DES became getting compromised by the advent of supercomputers which succeeded in

breaking the DES quickly using a brute-force attack. If the only form of attack that could be

made on an encryption algorithm is brute force, the way of countering it is obviously using

long keys. If a key of size 128 bits is used, it takes approximately 10
18

 years to break the

code making the algorithm unbreakable by brute-force approach.

The two analytical attacks on DES are Differential cryptanalysis and Linear cryptanalysis.
Both make use of Known plaintext-ciphertext pairs and try to attack the round structure
and the S-Boxes. Recent advancements showed that using Differential cryptanalysis, DES

can be broken using 2
47

 plaintext-ciphertext pairs and for linear cryptanalysis, the number

is even reduced to 2
41

.

Triple DES

The first answer to problems of DES is an algorithm called Double DES which includes

double encryption with two keys. It increases the key size to 112 bits, which seems to be

secure. But, there are some problems associated with this approach.
issue of reduction to single stage:

In other words, could there be a key K3 such that EK2 (EK21(P))= EK3(P)?
“meet-in-the-middle” attack:
 Works when given a known (P,C) pair

 since X = EK1(P) = DK2(C)

 attack by encrypting P with all 2
56

 keys K1and store

 then decrypt C with all possible 2
56

 keys K2 and match X value

23

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

 Test the two keys for the second pair of plaintext-ciphertext and if they match, correct keys are found

Triple DES was the answer to many of the shortcomings of DES. Since it is based on the DES

algorithm, it is very easy to modify existing software to use Triple DES. 3DES was developed

in 1999 by IBM – by a team led by Walter Tuchman. 3DES prevents a meet-in-the-middle

attack. 3DES has a 168-bit key and enciphers blocks of 64 bits. It also has the advantage of

proven reliability and a longer key length that eliminates many of the shortcut attacks that

can be used to reduce the amount of time it takes to break DES. 3DES uses three keys and

three executions of the DES algorithm. The function follows an encrypt-decrypt-encrypt

(EDE) sequence.

Where C= ciphertext, P= plaintext and

EK[X] = encryption of X using key K

DK[Y] = decryption of Y using key K
Decryption is simply the same operation with the keys reversed

Triple DES runs three times slower than standard DES, but is much more secure if used

properly. With three distinct keys, TDEA has an effective key length of 168 bits making it a

formidable algorithm. As the underlying algorithm is DEA, it offers the same resistance to

cryptanalysis as is DEA.
Triple DES can be done using 2 keys or 3 keys.

24

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

International Data Encryption Standard

The International Data Encryption Standard Algorithm (IDEA) is a symmetric block cipher

that was proposed to replace DES. It is a minor revision of an earlier cipher, PES (Proposed

Encryption Standard). IDEA was originally called IPES (Improved PES) and was also included

in PGP. IDEA is a block cipher which uses a 128-bit length key to encrypt successive 64-bit

blocks of plaintext.

The main design goals of IDEA are,

 Block Length: Block size of 64 bits is considered strong enough to deter statistical analysis. Also usage of

Cipher Feedback Mode of operation provides better strength.

 Key Length: Its key size of 128 bits is very secure to deter exhaustive search.

IDEA’s overall scheme is based on three different operations: Bit by Bit XOR denoted as ,

addition mod 2
16

 denoted as and multiplication mod (2
16

 +1) as

. All operations are

on 16-bit sub-blocks, with no permutations used. Completely avoid substitution boxes and
table lookups used in the block ciphers. The algorithm structure has been chosen such that
when different key sub-blocks are used, the encryption process is identical to the
decryption process.

In IDEA, Confusion is achieved by using these three separate operations in

combination providing a complex transformation of the input, making cryptanalysis much

more difficult (than with a DES which uses just a single XOR).
The main basic building block is the Multiplication/Addition (MA) structure shown below:

25

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Diffusion is provided by this MA structure where, each output bit depends on every bit of

inputs (plaintext-derived inputs and subkey inputs).This MA structure is repeated eight

times, providing very effective diffusion

The overall scheme for IDEA is shown below:

The encryption function takes two inputs; one being the plaintext to be encrypted and the

key. The plaintext is 64 bits in length and key is 128 bits in length. The IDEA algorithm

consists of eight rounds followed by a final transformation function. The algorithm divides

the input into four 16-bit sub-blocks. Each of the rounds takes four 16-bit sub-blocks as

input and produces four 16-bit output blocks. The final transformation also produces four

16-bit blocks, which are concatenated to form the 64-bit ciphertext. Each of the rounds also

makes use of six 16-bit subkeys, whereas the final transformation uses four subkeys, for a

total of 52 subkeys.

26

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

First, the 128-bit key is partitioned into eight 16-bit sub-blocks which are then

directly used as the first eight key sub-blocks {i.e. Z1, Z2… Z8 are taken directly from the 128-

bit key where Z1.equals the first 16 bits, Z2 corresponding to next 16 bits and so on}. The

128-bit key is then cyclically shifted to the left by 25 positions, after which the resulting 128-
bit block is again partitioned into eight 16-bit sub-blocks to be directly used as the next
eight key sub-blocks. The cyclic shift procedure described above is repeated until all of the
required 52 16-bit key sub-blocks have been generated. The following figure shows the
single round in the encryption algorithm.

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

IDEA deviates from the Feistel Structure that the round starts with a

transformation that combines four input subblocks with four subkeys, using the addition

and multiplication operations. These four output blocks are then combined using the XOR

operation to form two 16-bit blocks that are input to the MA structure, which also takes

two subkeys as input and combines these inputs to produce 16-bit outputs. Finally, the four

output blocks from the upper transformation are combined with the two output blocks of

the MA (Multiplication/Addition) structure using XOR to produce the four output blocks for

this round. Also, the two outputs that are partially generated by the second and third

inputs(X2 and X3) are interchanged to produce the second and third outputs (W12 and

W13). This increases the mixing of bits being processed and makes the algorithm more

resistant to differential cryptanalysis.

28

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

The ninth stage of the algorithm, labelled the output transformation stage has the same

structure as the upper rounds, but the only difference is that the second and third inputs

are interchanged before being applied to the operational units. The effect of this is undoing

the interchange at the end of eighth round. The reason for this extra interchange is so that

decryption has the same structure as encryption. The ninth stage requires only four subkey

inputs, compared to six subkey inputs for each of the first eight stages.

The computational process used for decryption of the ciphertext is essentially the same as

that used for encryption. The only difference is that each of the 52 16-bit key sub-blocks

used for decryption is the inverse of the key sub-block used during encryption. In addition,

the key sub-blocks must be used in the reverse order during decryption in order to reverse

the encryption process.

Decryption Steps:
 The first four subkeys of decryption round i are derived from the first four subkeys of

encryption round (10-i), where the transformation stage is counted as round 9. The first

and fourth decryption subkeys are equal to the multiplicative inverse modulo (2
16

 +1) of

the corresponding first and fourth encryption subkeys. For rounds 2 through 8, the

second and third decryption subkeys are equal to the additive inverse modulo (2
16

) of

the corresponding third and second encryption subkeys. For rounds 1 and 9, the second

and third decryption subkeys are equal to the additive inverse modulo (2
16

) of the

corresponding second and third encryption subkeys.

 For the first eight rounds, the last two subkeys of decryption round i are equal to the
last two subkeys of encryption round (9-i).

29

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

IDEA Encryption and Decryption Subkeys

• Zj
-1

: multiplicative inverse; Zj

 Zj
-1

 = 1

• -Zj : additive inverse; -Zj Zj = 0

Today, there are hundreds of IDEA-based security solutions available in many
market areas, ranging from Financial Services, and Broadcasting to Government. The

30

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

IDEA algorithm can easily be embedded in any encryption software. Data encryption can
be used to protect data transmission and storage. Typical fields are:

 Audio and video data for cable TV, pay TV, video conferencing, distance learning

 Sensitive financial and commercial data

 Email via public networks

 Smart cards

BLOWFISH Algorithm

Blowfish is a symmetric block cipher that can be effectively used for encryption and

safeguarding of data. It takes a variable-length key, from 32 bits to 448 bits. Blowfish was

designed in 1993 by Bruce Schneier as a fast, free alternative to existing encryption

algorithms. Blowfish is unpatented and license-free, and is available free for all uses.

Blowfish Algorithm is a Feistel Network, iterating a simple encryption function 16 times.

The block size is 64 bits, and the key can be any length up to 448 bits. Although, there is a

complex initialization phase required before any encryption can take place, the actual

encryption of data is very efficient on large microprocessors.

Blowfish is designed to have the following characteristics:
 Fast: Blowfish encrypts data on 32-bit microprocessors at a rate of 18 clock cycles per byte.

 Compact: Blowfish can run in less than 5k of memory.

 Simple: Blowfish’s simple structure is easy to implement and eases the task of determining the strength of
algorithm.

 Variably Secure: The key length is variable and can be as long as 448 bits. This allows a tradeoff
between higher speed and higher security.

Blowfish encrypts 64-bit blocks of plaintext into 64-bit blocks of ciphertext. Blowfish uses a

key that ranges from 32-bits to 448 bits. That key is used to generate 18 32-bit subkeys and

four 8*32 S-boxes containing a total of 1024 32-bit entries. The total is 1042 32-bit values,

or 4168 bytes. The keys are stored in a K-array.

K1, K2, …, Kj 1 j 14
The 18 32-bit subkeys are stored in the P-array:

P1, P2, …, P18
There are 4 S-boxes, each with 8x32(=256) 32-bit entries

Steps in generation of P-array and S-boxes are as follows:

31

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC
 P-array and then 4 S-boxes are initialized with fractional part of :

 P-array is XORed with K-array (reusing K-array if necessary):

P1 = P1 K1, P2 = P2 K2, …, Pj = Pj Kj, Pj+1 = Pj+1 K1,

Pj+2 = Pj+2 K2, …
 Encrypt the 64-bit block of all zeros using the current P- and S- arrays; replace P1 and P2 with the output

of the encryption.

 Encrypt the output of step 3 using the current P- and S- arrays and replace P3 and P4 with the resulting
ciphertext.

 Continue this process to update all elements of P and then ,in order, all elements of S, using at each
step the output of the continuously changing Blowfish algorithm.

 Then update process of P-array and S-boxes is summarized as follows:

Where EP,S[Y] is the ciphertext produced by encrypting Y using Blowfish with the P and S

arrays.

A total of 521 executions in total are required to produce the final P and S arrays.

Accordingly blowfish is not suitable for applications in which the secret key changes

frequently. Furthermore, for rapid execution, the P- and S- arrays can be stored rather than

rederived from the key each time the algorithm is used which requires upto 4kb of memory,

making blowfish unsuitable for applications with limited memory like smartcards.
Blowfish Encryption/Decryption:

Blowfish uses two primitive operations, which do not commute making cryptanalysis
difficult:

 Addition:- Addition of words, denoted by +, is performed modulo 2
32

 Bitwise exclusive-OR: This operation is denoted by .

The structure is a slight variant of classic Feistel
network o L and R are both processed in each round
o 16 rounds
o Two extra XORs at the end

32

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

The plain text is divided into two 32-bit halves LE0 and RE0.The resulting ciphertext is

contained in the two variables LE17 and RE17.

The function F is shown below:

33

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

The 32-bit input to F is divided into 4 bytes. If they are labelled a,b,c,d then the function can
be defined as

F(a, b, c, d) = ((S1,a + S2,b) S3,c) + S4,d

Thus, each round includes the complex used of addition modulo 2
32

 and XOR, plus

substitution using S-boxes. Decryption of Blowfish is easily derived from the encryption

algorithm. It involves using the subkeys in reverse order. Unlike most block ciphers, blowfish

decryption occurs in the same algorithmic direction as encryption rather than the reverse.
Some main characteristics of Blowfish are:

 Key-dependent S-Boxes

 Operations are performed on both halves of data

 Time-consuming subkey generation process: Makes it bad for rapid key switching, but
makes brute force expensive

 Perfect avalanche effect because of the function F

 Fast

34

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Advanced Encryption Standard

AES is a symmetric block cipher that is intended to replace DES as the approved standard for
a wide range of applications. The drawbacks of 3DES being it is very slow and also it uses 64-bit block
size same as DES. For reasons of both efficiency and security, a larger key size is desirable. So, NIST
(National Institute of Standards and Technology) has called for proposals for a new AES, which
should have security strength equal to or better than 3DES and significantly, improved efficiency.
NIST specified that AES must be a symmetric block cipher with a block length of 128 bits and support
for key lengths of 128, 192, and 256 bits.

Out of all the algorithms that were submitted, five were shortlisted and upon final
evaluation, NIST selected Rijndael as the proposed AES algorithm. The two researchers who
developed and submitted Rijndael for the AES are both cryptographers from Belgium: Dr. Joan
Daemen and Dr. Vincent Rijmen.

AES Evaluation:
There are three main categories of criteria used by NIST to evaluate potential candidates.

 Security: Resistance to cryptanalysis, soundness of math, randomness of output, etc

 Cost: Computational efficiency (speed), Memory requirements

 Algorithm/Implementation Characteristics: Flexibility, hardware and software suitability, algorithm
simplicity

Simplified AES

The encryption algorithm takes a 16-bit block of plaintext as input and a 16-bit key and

produces a 16-bit block of ciphertext as output. The S-AES decryption algorithm takes a 16-bit block

of ciphertext and the same 16-bit key used to produce that ciphertext as input and produces the

original 16-bit block of plaintext as output. The encryption algorithm involves the use of four

different functions, or transformations: add key (AK) nibble substitution (NS), shift row (SR), and

mix column (MC).
The encryption algorithm can be expressed as:

, so that AK0 is applied first.

The encryption algorithm is organized into three rounds. Round 0 is simply an add key round;
round 1 is a full round of four functions; and round 2 contains only 3 functions. Each round includes
the add key function, which makes use of 16 bits of key. The initial 16-bit key is expanded to 48 bits,
so that each round uses a distinct 16-bit round key. S- AES encryption and decryption scheme is
shown below.

35

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Each function operates on a 16-bit state, treated as a 2 x 2 matrix of nibbles, where one
nibble equals 4 bits. The initial value of the state matrix is the 16-bit plaintext; the state matrix is
modified by each subsequent function in the encryption process, producing after the last function
the 16-bit ciphertext. The following figure shows the ordering of nibbles within the matrix is by
column. So, for example, the first eight bits of a 16-bit plaintext input to the encryption cipher
occupy the first column of the matrix, and the second eight bits occupy the second column. The 16-
bit key is similarly organized, but it is somewhat more convenient to view the key as two bytes rather
than four nibbles The expanded key of 48 bits is treated as three round keys, whose bits are labelled

as follows: K0 = k0...k15; K1 = k16...k31; K2 = k32...k47.

36

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

The following figure shows the essential elements of a full round of S-AES. The decryption as
shown above can be given as:

in which three of the functions have a corresponding inverse function: inverse nibble substitution
(INS), inverse shift row (ISR), and inverse mix column (IMC).

S-AES Encryption and Decryption

The individual functions that are part of the encryption algorithm are given below.
Add Key

The add key function consists of the bitwise XOR of the 16-bit state matrix and the 16-bit round

key. As shown in the above example, it can also be viewed as a nibble-wise or bitwise operation. The

inverse of the add key function is identical to the add key function, because the XOR operation is its

own inverse.
Nibble Substitution

The nibble substitution function is a simple table lookup. AES defines a 4 x 4 matrix of nibble

values, called an S-box that contains a permutation of all possible 4-bit values. Each individual

nibble of the state matrix is mapped into a new nibble in the following way: The leftmost 2 bits

of the nibble are used as a row value and the rightmost 2 bits are used as a column value. These

row and column values serve as indexes into the S-box to select a unique 4-bit output value. For

example, the hexadecimal value A references row 2, column 2 of the S-box, which contains the

value 0. Accordingly, the value A is mapped into the value 0.

37

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

For the example, after nibble substitution, the output is

38

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Shift Row

The shift row function performs a one-nibble circular shift of the second row of the state matrix; the
first row is not altered. Our example is shown below:

The inverse shift row function is identical to the shift row function, because it shifts the second row
back to its original position.

Mix Column

The mix column function operates on each column individually. Each nibble of a column is mapped

into a new value that is a function of both nibbles in that column. The transformation can be defined

by the following matrix multiplication on the state matrix.

Where arithmetic is performed in GF(2
4
), and the symbol · refers to multiplication in GF(2

4
). The

example is shown below:

The inverse mix column function is defined as follows:

Key Expansion

For key expansion, the 16 bits of the initial key are grouped into a row of two 8-bit words. The

following figure shows the expansion into 6 words, by the calculation of 4 new words from the

initial 2 words. The algorithm is as follows:

39

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

RCON is a round constant, defined as follows: RC[i] = x
i + 2

, so that RC[1]=x
3
=1000 and RC[2]=x

4
 mod

(x
4
 + x + 1) = x + 1 = 0011. RC[i] forms the leftmost nibble of a byte, with the rightmost nibble being

all zeros. Thus, RCON(1) = 10000000 and RCON(2) = 00110000.

For example, suppose the key is 2D55 = 0010 1101 0101 0101 = w0w1. Then,

40

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

The S-Box

The S-box is constructed as follows:

7. Initialize the S-box with the nibble values in ascending sequence row by row. The first row contains

the hexadecimal values 0, 1, 2, 3; the second row contains 4, 5, 6, 7; and so on. Thus, the value of the
nibble at row i, column j is 4i + j.

8. Treat each nibble as an element of the finite field GF(2
4
) modulo x

4
 +x + 1. Each nibble a0a1a2a3

represents a polynomial of degree 3.
9. Map each byte in the S-box to its multiplicative inverse in the finite field GF(2

4
) modulo x

4
 + x + 1;

the value 0 is mapped to itself.
10. Consider that each byte in the S-box consists of 4 bits labeled (b0, b1, b2, b3). Apply the following

transformation to each bit of each byte in the S-box: The AES standard depicts this transformation in
matrix form as follows:

The prime (') indicates that the variable is to be updated by the value on the right. Remember that
addition and multiplication are being calculated modulo 2.

41

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

The AES Cipher

The Rijndael proposal for AES defined a cipher in which the block length and the key length can
be independently specified to be 128, 192, or 256 bits. The AES specification uses the same three
key size alternatives but limits the block length to 128 bits. The number of rounds is dependent
on the key size i.e. for key sizes of 128/192/256 bits, the number of rounds are 10/12/14. AES is
an iterated cipher (rather than Feistel cipher) as it processes data as block of 4 columns of 4
bytes and operates on entire data block in every round.

Rijndael was designed to have the following characteristics:

 Resistance against all known attacks

 Speed and code compactness on a wide range of platforms

 Design simplicity

The input to the encryption and decryption algorithms is a single 128-bit block. In
FIPS PUB 197, this block is depicted as a square matrix of bytes. This block is copied into the
State array, which is modified at each stage of encryption or decryption. After the final stage,
State is copied to an output matrix. In the same way, the 128-bit key is depicted as a square
matrix of bytes. This key is then expanded into an array of key schedule words; each word is
four bytes and the total key schedule is 44 words for the 128-bit key.

 The key that is provided as input is expanded into an array of forty-four 32-bit words, w[i].
Four distinct words (128 bits) serve as a round key for each round; these are indicated in
above figure.

 Four different stages are used, one of permutation and three of substitution:

I. Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of the block
II. ShiftRows: A simple permutation

III. MixColumns: A substitution that makes use of arithmetic over GF(2
8
)

IV. AddRoundKey: A simple bitwise XOR of the current block with a portion of the expanded
key

3. The structure is quite simple. For both encryption and decryption, the cipher begins with an
AddRoundKey stage, followed by nine rounds that each includes all four stages, followed by a
tenth round of three stages. The following figure depicts the structure of a full encryption
round.

4. Only the AddRoundKey stage makes use of the key. For this reason, the cipher begins and
ends with an AddRoundKey stage. Any other stage, applied at the beginning or end, is
reversible without knowledge of the key and so would add no security.

5. The AddRoundKey stage is, in effect, a form of Vernam cipher and by itself would not be
formidable. The other three stages together provide confusion, diffusion, and nonlinearity,
but by themselves would provide no security because they do not use the key. We can view

42

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

the cipher as alternating operations of XOR encryption (AddRoundKey) of a block, followed
by scrambling of the block (the other three stages), followed by XOR encryption, and so on.
This scheme is both efficient and highly secure.

AES Encryption and Decryption

6. Each stage is easily reversible. For the Substitute Byte, ShiftRows, and MixColumns stages,
an inverse function is used in the decryption algorithm. For the AddRoundKey stage, the
inverse is achieved by XORing the same round key to the block, using the result that

7. As with most block ciphers, the decryption algorithm makes use of the expanded key in
reverse order. However, the decryption algorithm is not identical to the encryption
algorithm. This is a consequence of the particular structure of AES.

43

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

8. Once it is established that all four stages are reversible, it is easy to verify that decryption
does recover the plaintext. AES structure figure lays out encryption and decryption going in
opposite vertical directions. At each horizontal point (e.g., the dashed line in the figure),
State is the same for both encryption and decryption.

9. The final round of both encryption and decryption consists of only three stages. Again, this
is a consequence of the particular structure of AES and is required to make the cipher
reversible.

AES Data Structures

Substitute Bytes Transformation:

 The forward substitute byte transformation, called subBytes is a simple table look up.

 Simple substitution on each byte of state independently

 Uses an S-box of 16x16 bytes containing a permutation of all 256 8-bit values

 The leftmost 4 bits of the byte are used as a row value and the rightmost 4 bits are used
as a column value.

 S-box constructed using defined transformation of values in GF(2
8
) and is designed to be

resistant to all known attacks
 The inverse substitute byte transformation called invSubBytes makes use of inverse S-box

44

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

AES Encryption Round

45

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

ShiftRows Transformation:

The forward shift row transformation, called ShiftRows, is depicted below. The first row

of State is not altered. For the second row, a 1-byte circular left shift is performed. For the third

row, a 2-byte circular left shift is performed. For the fourth row, a 3-byte circular left shift is

performed.

The inverse shift row transformation, called InvShiftRows, performs the circular shifts in the opposite
direction for each of the last three rows, with a one-byte circular right shift for the second row, and so on.

MixColumns Transformation

The forward mix column transformation, called MixColumns, operates on each column

individually. Each byte of a column is mapped into a new value that is a function of all four bytes

in that column. The transformation can be defined by the following matrix multiplication on

State.

46

www.jntuworld.com

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Each element in the product matrix is the sum of products of elements of one row and one

column. In this case, the individual additions and multiplications are performed in GF(2
8
) using

irreducible polynomial m(x) = x
8
 + x

4
 + x

3
 + x + 1. The inverse mix column transformation, called

InvMixColumns, is defined by the following matrix multiplication:

AddRoundKey Transformation

In the forward add round key transformation, called AddRoundKey, the 128 bits of

State are bitwise XORed with the 128 bits of the round key. As shown below, the operation is

viewed as a columnwise operation between the 4 bytes of a State column and one word of the

round key; it can also be viewed as a byte-level operation.

47

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

The inverse add round key transformation is identical to the forward add round key
transformation, because the XOR operation is its own inverse.

AES Key Expansion

The AES key expansion algorithm takes as input a 4-word (16-byte) key and produces a linear

array of 44 words (176 bytes). This is sufficient to provide a 4-word round key for the initial

AddRoundKey stage and each of the 10 rounds of the cipher. The key is copied into the first

four words of the expanded key. The remainder of the expanded key is filled in four

words at a time. Each added word w[i] depends on the immediately preceding word, w[i 1],

and the word four positions back,w[i 4]. In three out of four cases, a simple XOR is used. For

a word whose position in the w array is a multiple of 4, a more complex function g is used.

The function g consists

of the following subfunctions

RotWord performs a one-byte circular left shift on a word.
This means that an input word [b0, b1, b2, b3] is
transformed into [b1, b2, b3, b0].

SubWord performs a byte substitution on each byte of its
input word, using the S-box

 The result of steps 1 and 2 is XORed with a round constant, Rcon[j].

 The round constant is a word in which the three rightmost bytes are always 0.

 The effect of an XOR of a word with Rcon is to only perform an XOR on the leftmost byte of the word.

 The round constant is different for each round and is defined as Rcon[j] = (RC[j], 0, 0, 0), with RC[1] = 1,
RC[j] = 2 · RC[j - 1] and with multiplication defined over the field GF(2

8
).

48

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

AES Decryption
1. AES decryption is not

identical to encryption since

steps done in reverse

2. But can define an

equivalent inverse cipher with

steps as for encryption

3. But using inverses of each
step

4. With a different key
schedule

5. Works since result is
unchanged when

6. Swap byte substitution &
shift rows

7. Swap mix columns & add
(tweaked) round key

Implementation Aspects
 Can efficiently implement on 8-bit CPU

 byte substitution works on bytes using a table of 256 entries

 shift rows is simple byte shift

 add round key works on byte XOR’s

 mix columns requires matrix multiply in GF(2
8
) which works on byte values, can be simplified to use

table lookups & byte XOR’s

 Can efficiently implement on 32-bit CPU

 redefine steps to use 32-bit words

 can precompute 4 tables of 256-words

 then each column in each round can be computed using 4 table lookups + 4 XORs

 at a cost of 4Kb to store tables

 Designers believe this very efficient implementation was a key factor in its selection as the
AES cipher

49

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Cipher Block modes of Operation

To apply a block cipher in a variety of applications, four “modes of operation” have been defined

by NIST (FIPS 81). The four modes are intended to cover virtually all the possible applications of

encryption for which a block cipher could be used. As new applications and requirements have

appeared, NIST has expanded the list of recommended modes to five in Special Publication 800-

38A. These modes are intended for use with any symmetric block cipher, including triple DES

and AES.

Electronic Codebook Book (ECB)

The simplest mode is the electronic codebook (ECB) mode, in which plaintext is handled one

block at a time and each block of plaintext is encrypted using the same key. ECB is the simplest

of the modes, and is used when only a single block of info needs to be sent.

Break the plaintext into 64-bit blocks and encrypt each of them with the same key. The last

block should be padded to 64-bit if it is shorter. Same block and same key always yields same

cipher block. Each block is a value which is substituted, like a codebook, hence the name

Electronic Code Book. Each block is encoded independently of the other blocks.

Ci = DESK1(Pi)
ECB is not appropriate for any quantity of data, since repetitions can be seen, esp. with graphics,

and because the blocks can be shuffled/inserted without affecting the en/decryption of each

block. Its main use is to send one or a very few blocks, eg a session encryption key.

50

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Cipher Block Chaining Mode (CBC)

To overcome the problems of repetitions and order independence in ECB, want some way of

making the ciphertext dependent on all blocks before it. This is what CBC gives us, by combining

the previous ciphertext block with the current message block before encrypting. To start the

process, use an Initial Value (IV), which is usually well known (often all 0's), or otherwise is sent,

ECB encrypted, just before starting CBC use.

All cipher blocks will be chained so that if one is modified, the ciphertext cannot be decrypted

correctly. Each plaintext block is XORed with the previous cipher block before encryption, hence

the name CBC. The first plaintext block is XORed with an initialization vector IV, which is to be

protected securely, (e.g., send it encrypted in ECB mode).

Ci = DESK1(Pi XOR Ci-1)

CBC is the block mode generally used. The chaining provides an avalanche effect, which means

the encrypted message cannot be changed or rearranged without totally destroying the

subsequent data. However there is the issue of ensuring that the IV is either fixed or sent

encrypted in ECB mode to stop attacks on 1st block.

Cipher Feed Back Mode (CFB)

If the data is only available a bit/byte at a time (eg. terminal session, sensor value

etc), then must use some other approach to encrypting it, so as not to delay the info. it is possible

to convert DES into a stream cipher, using either the cipher feedback (CFB) or the output

feedback mode. A stream cipher eliminates the need to pad a message to be an integral number

of blocks. It also can operate in real time. Thus, if a character stream is being transmitted, each

character can be encrypted and transmitted immediately using a character-oriented stream

cipher.

One desirable property of a stream cipher is that the ciphertext be of the same length
as the plaintext. Thus, if 8-bit characters are being transmitted, each character should be

51

Information Security Unit-2 Symmetric Encryption, DES, AES

Message Authentication, Hash algorithms, HMAC

encrypted to produce a cipher text output of 8 bits. If more than 8 bits are produced,
transmission capacity is wasted.

The input to the encryption function is a b-bit shift register that is initially set to some
initialization vector (IV). The leftmost (most significant) s bits of the output of the encryption

function are XORed with the first segment of plaintext P1 to produce the first unit of ciphertext

C1, which is then transmitted. In addition, the contents of the shift register are shifted left by s

bits and C1 is placed in the rightmost (least significant) s bits of the shift register. This process

continues until all plaintext units have been encrypted. For decryption, the same scheme is used,
except that the received ciphertext unit is XORed with the output of the encryption function to
produce the plaintext unit. Note that it is the encryption function that is used, not the decryption
function.

Ci = Pi XOR DESK1(Ci-1)

CFB is the usual stream mode. As long as can keep up with the input, doing encryptions every 8
bytes. A possible problem is that if its used over a "noisy" link, then any corrupted bit will destroy

52

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

values in the current and next blocks (since the current block feeds as input to create the random

bits for the next). So either must use over a reliable network transport layer (pretty usual) or use

OFB.

Output Feedback Mode (OFB)

The output feedback (OFB) mode is similar in structure to that of CFB. It is the output of the

encryption function that is fed back to the shift register in OFB, whereas in CFB the ciphertext

unit is fed back to the shift register.

Keystream is independent of the data and can be computed in advance.

Ci = Pi XOR Oi Oi

= DESK1(Oi-1)

Here the generation of the "random" bits is independent of the message being encrypted. The

advantage is that firstly, they can be computed in advance, good for bursty traffic, and secondly,

any bit error only affects a single bit. Thus this is good for noisy links (eg satellite TV transmissions

etc). The disadvantage of OFB is that it is more vulnerable to a message stream modification

attack than is CFB.

53

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Counter Mode (CTR)

The Counter (CTR) mode is a variant of OFB, but which encrypts a counter value (hence name).

Although it was proposed many years before, it has only recently been standardized for use with

AES along with the other existing 4 modes. It is being used with applications in ATM

(asynchronous transfer mode) network security and IPSec (IP security).

All modes of operations except ECB make random access to the file impossible: to access data at

the end of the file one has to decrypt everything. Plaintext is not encrypted directly. IV plus a

constant is encrypted and the resulting ciphertext is XORed with the plaintext – add 1 to IV in

each step.

If the same IV is used twice with the same key, then cryptanalyst may XOR the ciphers to get the

XOR of the plaintexts –this could be used in an attack. A counter, equal to the plaintext block size

is used. The only requirement stated in SP 800-38A is that the counter value must be different for

each plaintext block that is encrypted. Typically the counter is initialized to some value and then

incremented by 1 for each subsequent block.

CTR mode has a number of advantages in parallel h/w & s/w efficiency, can preprocess the

output values in advance of needing to encrypt, can get random access to encrypted data blocks,

and is simple. But like OFB have issue of not reusing the same key + counter value.

54

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Message Authentication

Message authentication is a procedure to verify that received messages come from the

alleged source and have not been altered. Message authentication may also verify sequencing

and timeliness. It is intended against the attacks like content modification, sequence

modification, timing modification and repudiation. For repudiation, concept of digital signatures

is used to counter it. There are three classes by which different types of functions that may be

used to produce an authenticator. They are:

 Message encryption–the ciphertext serves as authenticator

 Message authentication code (MAC)–a public function of the message and a secret key producing
a fixed-length value to serve as authenticator. This does not provide a digital signature because A
and B share the same key.

 Hash function–a public function mapping an arbitrary length message into a fixed-length hash value to serve as
authenticator. This does not provide a digital signature because there is no key.

Message Encryption:

Message encryption by itself can provide a measure of authentication. The analysis differs

for conventional and public-key encryption schemes. The message must have come from the

sender itself, because the ciphertext can be decrypted using his (secret or public) key. Also, none

of the bits in the message have been altered because an opponent does not know how to

manipulate the bits of the ciphertext to induce meaningful changes to the plaintext.

Often one needs alternative authentication schemes than just encrypting the message.
 Sometimes one needs to avoid encryption of full messages due to legal requirements.

 Encryption and authentication may be separated in the system architecture.

The different ways in which message encryption can provide authentication, confidentiality in
both symmetric and asymmetric encryption techniques is explained with the table below:

55

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Message Authentication Code

An alternative authentication technique involves the use of a secret key to generate a small
fixed-size block of data, known as cryptographic checksum or MAC, which is appended to the
message. This technique assumes that both the communicating parties say A and B share a
common secret key K. When A has a message to send to B, it calculates MAC as a function C of

key and message given as: MAC=Ck(M)

The message and the MAC are transmitted to the intended recipient, who upon receiving

performs the same calculation on the received message, using the same secret key to generate a

new MAC. The received MAC is compared to the calculated MAC and only if they match, then:
11. The receiver is assured that the message has not been altered: Any alternations been done the

MAC’s do not match.

56

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

 The receiver is assured that the message is from the alleged sender: No one except the sender
has the secret key and could prepare a message with a proper MAC.

 If the message includes a sequence number, then receiver is assured of proper sequence as an

attacker cannot successfully alter the sequence number.
Basic uses of Message Authentication Code (MAC) are shown in the figure:

There are three different situations where use of a MAC is desirable:

 If a message is broadcast to several destinations in a network (such as a military control center),
then it is cheaper and more reliable to have just one node responsible to evaluate the
authenticity –message will be sent in plain with an attached authenticator.

 If one side has a heavy load, it cannot afford to decrypt all messages –it will just check the authenticity of some
randomly selected messages.

 Authentication of computer programs in plaintext is very attractive service as they need not be
decrypted every time wasting of processor resources. Integrity of the program can always be
checked by MAC.

57

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Message Authentication Code Based on DES

The Data Authentication Algorithm, based on DES, has been one of the most widely used MACs

for a number of years. The algorithm is both a FIPS publication (FIPS PUB 113) and an ANSI

standard (X9.17). But, security weaknesses in this algorithm have been discovered and it is being

replaced by newer and stronger algorithms.

The algorithm can be defined as using the cipher block chaining (CBC) mode of operation of DES
shown below with an initialization vector of zero.

The data (e.g., message, record, file, or program) to be authenticated are grouped into

contiguous 64-bit blocks: D1, D2,..., DN. If necessary, the final block is padded on the right with

zeroes to form a full 64-bit block. Using the DES encryption algorithm, E, and a secret key, K, a
data authentication code (DAC) is calculated as follows:

The DAC consists of either the entire block ON or the leftmost M bits of

the block, with 16 ≤ M ≤ 64

Use of MAC needs a shared secret key between the communicating parties and also MAC does

not provide digital signature. The following table summarizes the confidentiality and

authentication implications of the approaches shown above.

58

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Hash Function

A variation on the message authentication code is the one-way hash function. As with the

message authentication code, the hash function accepts a variable-size message M as input and

produces a fixed-size hash code H(M), sometimes called a message digest, as output. The hash

code is a function of all bits of the message and provides an error-detection capability: A change

to any bit or bits in the message results in a change to the hash code. A variety of ways in which a

hash code can be used to provide message authentication is shown below and explained

stepwise in the table.

59

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

60

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

In cases where confidentiality is not required, methods b and c have an advantage over those

that encrypt the entire message in that less computation is required. Growing interest for

techniques that avoid encryption is due to reasons like, Encryption software is quite slow and

may be covered by patents. Also encryption hardware costs are not negligible and the algorithms

are subject to U.S export control.

A fixed-length hash value h is generated by a function H that takes as input a message of
arbitrary length: h=H(M).

 A sends M and H(M)

 B authenticates the message by computing H(M) and checking the match

Requirements for a hash function: The purpose of a hash function is to produce a “fingerprint”

of a file, message, or other block of data. To be used for message authentication, the hash

function H must have the following properties

 H can be applied to a message of any size

 H produces fixed-length output

 Computationally easy to compute H(M) for any given M

 Computationally infeasible to find M such that H(M)=h, for a given h, referred to as the one-way property

 Computationally infeasible to find M’ such that H(M’)=H(M), for a given M, referred to as weak collision
resistance.

 Computationally infeasible to find M,M’ with H(M)=H(M’) (to resist to birthday attacks), referred to as strong
collision resistance.

Examples of simple hash functions are:
 Bit-by-bit XOR of plaintext blocks: h= D1⊕D2⊕…⊕DN

 rotated XOR –before each addition the hash value is rotated to the left with 1 bit

 Cipher block chaining technique without a secret key.

MD5 Message Digest Algorithm

The MD5 message-digest algorithm was developed by Ron Rivest at MIT and it remained as

the most popular hash algorithm until recently. The algorithm takes as input, a message of

arbitrary length and produces as output, a 128-bit message digest. The input is processed in 512-

bit blocks. The processing consists of the following steps:

1.) Append Padding bits: The message is padded so that its length in bits is congruent to 448 modulo
512 i.e. the length of the padded message is 64 bits less than an integer multiple of 512 bits.

61

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Padding is always added, even if the message is already of the desired length. Padding consists of
a single 1-bit followed by the necessary number of 0-bits.

2.) Append length: A 64-bit representation of the length in bits of the original message (before the

padding) is appended to the result of step-1. If the length is larger than 264, the 64 least

representative bits are taken.

3.) Initialize MD buffer: A 128-bit buffer is used to hold intermediate and final results of the hash

function. The buffer can be represented as four 32-bit registers (A, B, C, D) and are initialized

with A=0x01234567, B=0x89ABCDEF, C=0xFEDCBA98, D=0x76543210 i.e. 32-bit integers

(hexadecimal values).

Message Digest Generation Using MD5

4.) Process Message in 512-bit (16-word) blocks: The heart of algorithm is the compression function

that consists of four rounds of processing and this module is labeled HMD5 in the above figure

and logic is illustrated in the following figure. The four rounds have a similar structure, but each

uses a different primitive logical function, referred to as F, G, H and I in the specification. Each

block takes as input the current 512-bit block being processed Yq and the 128-bit buffer value

ABCD and updates the contents of the buffer. Each round also makes use of one-fourth of a 64-

element table T*1….64+, constructed from the sine function. The ith element of T, denoted T*i+,

has the value equal to the integer part of 2
32

 * abs(sin(i)), where i is in radians. As the value of

abs(sin(i)) is a value between 0 and 1, each element of T is an integer that can be represented in

62

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

32-bits and would eliminate any regularities in the input data. The output of fourth round is

added to the input to the first round (CVq) to produce CVq+1. The addition is done independently

for each of the four words in the buffer with each of the corresponding words in CVq, using

addition modulo 2
32

. This operation is shown in the figure below:

5.) Output: After all L 512-bit blocks have been processed, the output from the Lth stage is the 128-
bit message digest. MD5 can be summarized as follows:

CV0 = IV

CVq+1 = SUM32(CVq,RFIYqRFH[Yq,RFG[Yq,RFF[Yq,CVq]]]])

MD = CVL
Where,

IV = initial value of ABCD buffer, defined in step 3.

Yq = the q
th

 512-bit block of the message

L = the number of blocks in the message

CVq = chaining variable processed with the q
th

 block of the message.

63

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

RFx = round function using primitive logical function x.
MD = final message digest value

SUM32 = Addition modulo 2
32

 performed separately.

MD5 Compression Function:

Each round consists of a sequence of 16 steps operating on the buffer ABCD. Each step is of
the form,

a = b+((a+g(b,c,d)+X[k]+T[i])<<<s)

where a, b, c, d refer to the four words of the buffer but used in varying permutations. After 16

steps, each word is updated 4 times. g(b,c,d) is a different nonlinear function in each round

(F,G,H,I). Elementary MD5 operation of a single step is shown below.

The primitive function g of the F,G,H,I is given as:

Where the logical operators (AND, OR, NOT, XOR) are represented by the symbols (, , ~,).

64

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Each round mixes the buffer input with the next "word" of the message in a complex,

non-linear manner. A different non-linear function is used in each of the 4 rounds (but the same

function for all 16 steps in a round). The 4 buffer words (a,b,c,d) are rotated from step to step so

all are used and updated. g is one of the primitive functions F,G,H,I for the 4 rounds respectively.

X[k] is the kth 32-bit word in the current message block. T[i] is the ith entry in the matrix of

constants T. The addition of varying constants T and the use of different shifts helps ensure it is

extremely difficult to compute collisions.

The array of 32-bit words X[0..15] holds the value of current 512-bit input block being

processed. Within a round, each of the 16 words of X[i] is used exactly once, during one step. The

order in which these words is used varies from round to round. In the first round, the words are

used in their original order. For rounds 2 through 4, the following permutations are used
 2(i) = (1 + 5i) mod 16

 3(i) = (5 + 3i) mod 16

 4(I) = 7i mod 16

MD4
 Precursor to MD5

 Design goals of MD4 (which are carried over to MD5)

 Security

 Speed

 Simplicity and compactness

 Favor little-endian architecture

 Main differences between MD5 and MD4

 A fourth round has been added.

 Each step now has a unique additive constant.

 The function g in round 2 was changed from (bc v bd v cd) to (bd v cd’) to make g
less symmetric.

 Each step now adds in the result of the previous step. This promotes a faster
"avalanche effect".

 The order in which input words are accessed in rounds 2 and 3 is changed, to
make these patterns less like each other.

 The shift amounts in each round have been approximately optimized, to yield a
faster "avalanche effect." The shifts in different rounds are distinct.

Secure Hash Algorithm:

The secure hash algorithm (SHA) was developed by the National Institute of Standards and
Technology (NIST). SHA-1 is the best established of the existing SHA hash functions, and is

65

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

employed in several widely used security applications and protocols. The algorithm takes as input

a message with a maximum length of less than 2
64

 bits and produces as output a 160-bit
message digest.

The input is processed in 512-bit blocks. The overall processing of a message follows the

structure of MD5 with block length of 512 bits and a hash length and chaining variable length of

160 bits. The processing consists of following steps:

1.) Append Padding Bits: The message is padded so that length is congruent to 448 modulo 512;
padding always added –one bit 1 followed by the necessary number of 0 bits.

2.) Append Length: a block of 64 bits containing the length of the original message is added.

3.) Initialize MD buffer: A 160-bit buffer is used to hold intermediate and final results on the hash

function. This is formed by 32-bit registers A,B,C,D,E. Initial values: A=0x67452301,

B=0xEFCDAB89, C=0x98BADCFE, D=0x10325476, E=C3D2E1F0. Stores in big-endian format i.e.

the most significant bit in low address.

4.) Process message in blocks 512-bit (16-word) blocks: The processing of a single 512-bit block is

shown above. It consists of four rounds of processing of 20 steps each. These four rounds have

similar structure, but uses a different primitive logical function, which we refer to as f1, f2, f3 and

f4. Each round takes as input the current 512-bit block being processed and the 160-bit buffer

value ABCDE and updates the contents of the buffer. Each round also makes use of four distinct

additive constants Kt. The output of the fourth round i.e. eightieth step is added to the input to

the first round to produce CVq+1.

66

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

5.) Output: After all L 512-bit blocks have been processed, the output from the Lth stage is the 160-
bit message digest.

The behavior of SHA-1 is as follows:

CV0 = IV

CVq+1 = SUM32(CVq, ABCDEq)

MD = CVL

Where, IV = initial value of ABCDE buffer

ABCDEq = output of last round of processing of qth message block
L = number of blocks in the message

SUM32 = Addition modulo 2
32

MD = final message digest value.

67

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

SHA-1 Compression Function:

Each round has 20 steps which replaces the 5 buffer words. The logic present in each one of
the 80 rounds present is given as

(A,B,C,D,E) <- (E + f(t,B,C,D) + S
5
(A)+ Wt+ Kt),A,S

30
(B),C,D

Where, A, B, C, D, E = the five words of the buffer
t = step number; 0< t < 79
f(t,B,C,D) = primitive logical function for step t

S
k
 = circular left shift of the 32-bit argument by k bits

Wt = a 32-bit word derived from current 512-bit input block.
Kt = an additive constant; four distinct values are used
+ = modulo additon

Elementary SHA operation (single step)

SHA shares much in common with MD4/5, but with 20 instead of 16 steps in each of the 4

rounds. Note the 4 constants are based on sqrt(2,3,5,10). Note also that instead of just splitting

the input block into 32-bit words and using them directly, SHA-1 shuffles and mixes them using

rotates & XOR’s to form a more complex input, and greatly increases the difficulty of finding

collisions. A sequence of logical functions f0, f1,..., f79 is used in the SHA-1.

Each ft, 0<=t<=79, operates on three 32-bit words B, C, D and produces a 32-bit word as

output. ft(B,C,D) is defined as follows: for words B, C, D,

ft(B,C,D) = (B AND C) OR ((NOT B) AND D) (0 <= t <= 19)
ft(B,C,D) = B XOR C XOR D (20 <= t <= 39)

ft(B,C,D) = (B AND C) OR (B AND D) OR (C AND D) (40 <= t <=
59) ft(B,C,D) = B XOR C XOR D (60 <= t <= 79).

68

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

Comparison of SHA-1 with MD5
12. brute force attack is harder (160 vs 128 bits for MD5)
13. not vulnerable to any known attacks (compared to MD4/5)
14. a little slower than MD5 (80 vs 64 steps)
15. both designed as simple and compact
16. optimised for big endian CPU's (vs MD5 which is optimised for little endian CPU’s)

RIPEMD-160

RIPEMD-160 was developed in Europe as part of RIPE project in 96 by researchers involved in

attacks on MD4/5. It is somewhat similar to MD5/SHA and uses 2 parallel lines of 5 rounds of 16

steps. Creates a 160-bit hash value. It is slower, but probably more secure, than SHA. The

processing consists of the following steps:

1.) Append Padding Bits: The message is padded so that length is congruent to 448 modulo 512;
padding always added –one bit 1 followed by the necessary number of 0 bits.

2.) Append Length: a block of 64 bits containing the length of the original message is added.

3.) Initialize MD buffer: A 160-bit buffer is used to hold intermediate and final results on the hash

function. This is formed by 32-bit registers A,B,C,D,E. Initial values: A=0x67452301,

B=0xEFCDAB89, C=0x98BADCFE, D=0x10325476, E=C3D2E1F0. Unlike SHA, like MD5, RIPEMD-

160 uses a little-endian convention.

4.) Process message in blocks 512-bit (16-word) blocks: The algorithm consists of 10 rounds of

processing of 16 steps each. The 10 rounds are arranged as two parallel lines of five rounds. The

processing is depicted below:

The 10 rounds have a similar structure, but uses a different primitive logical function, referred to
as f1, f2, f3, f4 and f5. The same functions are used in the reverse order in the right line. Each
round also makes use of an additive constant and in total nine distinct constants are used, one of
them being zero. The output of the fifth round is added to the chaining variable input to the first

round CVq to produce CVq+1 and this addition is done independently for each of the five words in

buffer of each line with each of the words of CVq.

5.) Output: After all L 512-bit blocks have been processed, the output from the Lth stage is the 160-
bit message digest.

69

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

RIPEMD-160 Compression Function

The compression function is rather more complex than SHA. Operation of single step of
RIPEMD-160 is shown below:

One of the 5 primitive logical functions is used in each round; (functions used in reverse order on
the right line).Each primitive function takes three 32-bit words as input and produces a 32-bit

70

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

word output. It performs a set of bitwise logical operations and the functions are summarized
below and the truth table for logical functions is also given below;

The pseudo code given below defines the processing algorithm for one round

71

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

RIPEMD-160 is probably the most secure of the hash algorithms. The following are the design

criteria taken into consideration by the developers of RIPEMD-160 to get some level of detail

that must be considered in designing a strong cryptographic hash function.
 Use 2 parallel lines of 5 rounds for increased complexity

 For simplicity the 2 lines are very similar i.e. same logic. But the notable differences are additive

constants, order of primitive logical functions and processing of 32-bit words.
 Step operation very close to MD5
 Permutation varies parts of message used
 Circular shifts designed for best results

Comparison of above stated three algorithms is given below in a tabular form:

72

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

HMAC

Interest in developing a MAC, derived from a cryptographic hash code has been increasing

mainly because hash functions are generally faster and are also not limited by export restrictions

unlike block ciphers. Additional reason also would be that the library code for cryptographic hash

functions is widely available. The original proposal is for incorporation of a secret key into an

existing hash algorithm and the approach that received most support is HMAC. HMAC is specified

as Internet standard RFC2104. It makes use of the hash function on the given message. Any of

MD5, SHA-1, RIPEMD-160 can be used.

HMAC Design Objectives
 To use, without modifications, available hash functions

 To allow for easy replaceability of the embedded hash function

 To preserve the original performance of the hash function

 To use and handle keys in a simple way

 To have a well understood cryptographic analysis of the strength of the MAC based on reasonable
assumptions on the embedded hash function

The first two objectives are very important for the acceptability of HMAC. HMAC treats the

hash function as a “black box”, which has two benefits. First is that an existing implementation of

the hash function can be used for implementing HMAC making the bulk of HMAC code readily

available without modification. Second is that if ever an existing hash function is to be replaced,

the existing hash function module is removed and new module is dropped in. The last design

objective provides the main advantage of HMAC over other proposed hash-based schemes.

HMAC can be proven secure provided that the embedded hash function has some reasonable

cryptographic strengths.

Steps involved in HMAC algorithm:

 Append zeroes to the left end of K to create a b-bit string K
+
 (ex: If K is of length 160-bits and b =

512, then K will be appended with 44 zero bytes).

 XOR(bitwise exclusive-OR) K
+
 with ipad to produce the b-bit block Si.

 Append M to Si.
 Now apply H to the stream generated in step-3

 XOR K
+
 with opad to produce the b-bit block S0.

 Append the hash result from step-4 to S0.
 Apply H to the stream generated in step-6 and output the result.

73

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

HMAC Algorithm

HMAC Structure:

74

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

The XOR with ipad results in flipping one-half of the bits of K. Similarly, XOR with opad results

in flipping one-half of the bits of K, but different set of bits. By passing Si and S0 through the

compression function of the hash algorithm, we have pseudorandomly generated two keys from
K.

HMAC should execute in approximately the same time as the embedded hash function for

long messages. HMAC adds three executions of the hash compression function (for S0, Si, and the
block produced from the inner hash)

A more efficient implementation is possible. Two quantities are precomputed.

f(IV, (K
+
 ipad)

f(IV, (K
+
 opad)

where f is the compression function for the hash function which takes as arguments a

chaining variable of n bits and a block of b-bits and produces a chaining variable of n bits.

As shown in the above figure, the values are needed to be computed initially and every time a

key changes. The precomputed quantities substitute for the initial value (IV) in the hash function.

With this implementation, only one additional instance of the compression function is added to

the processing normally produced by the hash function. This implementation is worthwhile if

most of the messages for which a MAC is computed are short.

Security of HMAC:
75

Information Security Unit-2 Symmetric Encryption, DES, AES Message Authentication, Hash algorithms,

HMAC

The appeal of HMAC is that its designers have been able to prove an exact relationship

between the strength of the embedded hash function and the strength of HMAC. The security of

a MAC function is generally expressed in terms of the probability of successful forgery with a

given amount of time spent by the forger and a given number of message-MAC pairs created

with the same key. Have two classes of attacks on the embedded hash function:

 The attacker is able to compute an output of the compression function even with an IV that is
random, secret and unknown to the attacker.

 The attacker finds collisions in the hash function even when the IV is random and secret.

These attacks are likely to be caused by brute force attack on key used which has work of order

2
n

; or a birthday attack which requires work of order 2
(n/2)

 - but which requires the attacker to

observe 2
n

 blocks of messages using the same key - very unlikely. So even MD5 is still secure for
use in HMAC given these constraints.

76

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

UNIT-3

Public key cryptography principles, public key cryptography algorithms,

digital signatures, digital Certificates, Certificate Authority and key

management Kerberos, X.509 Directory Authentication Service.

Public Key Cryptography:

The development of public-key cryptography is the greatest and perhaps the only

true revolution in the entire history of cryptography. It is asymmetric, involving the use of

two separate keys, in contrast to symmetric encryption, which uses only one key. Public key

schemes are neither more nor less secure than private key (security depends on the key size

for both). Public-key cryptography complements rather than replaces symmetric

cryptography. Both also have issues with key distribution, requiring the use of some suitable

protocol.

The concept of public-key cryptography evolved from an attempt to attack two of

the most difficult problems associated with symmetric encryption:

1.) key distribution – how to have secure communications in general without having to

trust a KDC with your key

2.) digital signatures – how to verify a message comes intact from the claimed sender

Public-key/two-key/asymmetric cryptography involves the use of two keys:

 a public-key, which may be known by anybody, and can be used to encrypt messages,

and verify signatures

 a private-key, known only to the recipient, used to decrypt messages, and sign

(create) signatures.

 is asymmetric because those who encrypt messages or verify signatures cannot decrypt
messages or create signatures

Public-Key algorithms rely on one key for encryption and a different but related key for

decryption. These algorithms have the following important characteristics:

 it is computationally infeasible to find decryption key knowing only algorithm &
encryption key

 it is computationally easy to en/decrypt messages when the relevant (en/decrypt) key is
known

 1

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

 either of the two related keys can be used for encryption, with the other used for
decryption (for some algorithms like RSA)

The following figure illustrates public-key encryption process and shows that a public-key

encryption scheme has six ingredients: plaintext, encryption algorithm, public & private

keys, ciphertext & decryption algorithm.

The essential steps involved in a public-key encryption scheme are given below:

1.) Each user generates a pair of keys to be used for encryption and decryption.

2.) Each user places one of the two keys in a public register and the other key is kept

private.

3.) If B wants to send a confidential message to A, B encrypts the message using A’s

public key.

4.) When A receives the message, she decrypts it using her private key. Nobody else can

decrypt the message because that can only be done using A’s private key (Deducing

a private key should be infeasible).

5.) If a user wishes to change his keys –generate another pair of keys and publish the

public one: no interaction with other users is needed.

Notations used in Public-key cryptography:
 The public key of user A will be denoted KUA.

 The private key of user A will be denoted KRA.

 Encryption method will be a function E.

 2

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509
 Decryption method will be a function D.

 If B wishes to send a plain message X to A, then he sends the cryptotext Y=E(KUA,X)

 The intended receiver A will decrypt the message: D(KRA,Y)=X

The first attack on Public-key Cryptography is the attack on Authenticity. An attacker

may impersonate user B: he sends a message E(KUA,X) and claims in the message to be B –A

has no guarantee this is so. To overcome this, B will encrypt the message using his private

key: Y=E(KRB,X). Receiver decrypts using B’s public key KRB. This shows the authenticity of

the sender because (supposedly) he is the only one who knows the private key. The entire

encrypted message serves as a digital signature. This scheme is depicted in the following

figure:

But, a drawback still exists. Anybody can decrypt the message using B’s public key. So,

secrecy or confidentiality is being compromised.

One can provide both authentication and confidentiality using the public-key scheme twice:

 3

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

 B encrypts X with his private key: Y=E(KRB,X)

 B encrypts Y with A’s public key: Z=E(KUA,Y)

 A will decrypt Z (and she is the only one capable of doing it): Y=D(KRA,Z)

 A can now get the plaintext and ensure that it comes from B (he is the only one who

knows his private key): decrypt Y using B’s public key: X=E(KUB,Y).

Applications for public-key cryptosystems:

1.) Encryption/decryption: sender encrypts the message with the receiver’s public key.

2.) Digital signature: sender “signs” the message (or a representative part of the

message) using his private key

3.) Key exchange: two sides cooperate to exchange a secret key for later use in a secret-

key cryptosystem.

The main requirements of Public-key cryptography are:

1. Computationally easy for a party B to generate a pair (public key KUb, private key

KRb).

2. Easy for sender A to generate ciphertext:
C

E

KUb

(M

)

3. Easy for the receiver B to decrypt ciphertect using private key:

M DKRb (C) DKRb[EKUb (M)]
4. Computationally infeasible to determine private key (KRb) knowing public key (KUb)

5. Computationally infeasible to recover message M, knowing KUb and ciphertext C

6. Either of the two keys can be used for encryption, with the other used for

decryption:

 4

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

M DKRb[EKUb (M)] DKUb[EKRb (M)]

Easy is defined to mean a problem that can be solved in polynomial time as a function of

input length. A problem is infeasible if the effort to solve it grows faster than polynomial

time as a function of input size. Public-key cryptosystems usually rely on difficult math

functions rather than S-P networks as classical cryptosystems. One-way function is one,

easy to calculate in one direction, infeasible to calculate in the other direction (i.e., the

inverse is infeasible to compute). Trap-door function is a difficult function that becomes

easy if some extra information is known. Our aim to find a trap-door one-way function,

which is easy to calculate in one direction and infeasible to calculate in the other direction

unless certain additional information is known.

Security of Public-key schemes:

 Like private key schemes brute force exhaustive search attack is always theoretically
possible. But keys used are too large (>512bits).

 Security relies on a large enough difference in difficulty between easy (en/decrypt)
and hard (cryptanalyse) problems. More generally the hard problem is known, its
just made too hard to do in practise.

 Requires the use of very large numbers, hence is slow compared to private key schemes

RSA algorithm

RSA is the best known, and by far the most widely used general public key encryption

algorithm, and was first published by Rivest, Shamir & Adleman of MIT in 1978 [RIVE78].

Since that time RSA has reigned supreme as the most widely accepted and implemented

general-purpose approach to public-key encryption. The RSA scheme is a block cipher in

which the plaintext and the ciphertext are integers between 0 and n-1 for some fixed n and

typical size for n is 1024 bits (or 309 decimal digits). It is based on

 5

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

exponentiation in a finite (Galois) field over integers modulo a prime, using large integers

(eg. 1024 bits). Its security is due to the cost of factoring large numbers.

RSA involves a public-key and a private-key where the public key is known to all and

is used to encrypt data or message. The data or message which has been encrypted using a

public key can only be decryted by using its corresponding private-key. Each user generates

a key pair i.e. public and private key using the following steps:

 each user selects two large primes at random - p, q

 compute their system modulus n=p.q

 calculate ø(n), where ø(n)=(p-1)(q-1)

 selecting at random the encryption key e, where 1<e<ø(n),and gcd(e,ø(n))=1

 solve following equation to find decryption key d: e.d=1 mod ø(n) and 0≤d≤n

 publish their public encryption key: KU={e,n}

 keep secret private decryption key: KR={d,n}

Both the sender and receiver must know the values of n and e, and only the receiver

knows the value of d. Encryption and Decryption are done using the following equations.

To encrypt a message M the sender:

– obtains public key of recipient KU={e,n}

– computes: C=M
e
 mod n, where 0≤M<n

To decrypt the ciphertext C the owner:

– uses their private key KR={d,n}

– computes: M=C
d
 mod n = (M

e
)

d
 mod n = M

ed
 mod n

For this algorithm to be satisfactory, the following requirements are to be met.

a) Its possible to find values of e, d, n such that M
ed

 = M mod n for all M<n

b) It is relatively easy to calculate M
e
 and C for all values of M < n.

c) It is impossible to determine d given e and n

The way RSA works is based on Number theory:

Fermat’s little theorem: if p is prime and a is positive integer not divisible by p, then

a
p-1

 ≡ 1 mod p.

Corollary: For any positive integer a and prime p, a
p

 ≡ a mod p.

 6

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

Fermat’s theorem, as useful as will turn out to be does not provide us with integers

d,e we are looking for –Euler’s theorem (a refinement of Fermat’s) does. Euler’s function

associates to any positive integer n, a number φ(n): the number of positive integers smaller

than n and relatively prime to n. For example, φ(37) = 36 i.e. φ(p) = p-1 for any prime p. For

any two primes p,q, φ(pq)=(p-1)(q-1).

Euler’s theorem: for any relatively prime integers a,n we have a
φ(n)

≡1 mod n.

Corollary: For any integers a,n we have a
φ(n)+1

≡a mod n
Corollary: Let p,q be two odd primes and n=pq. Then:

φ(n)=(p-1)(q-1)

For any integer m with 0<m<n, m
(p-1)(q-1)+1

 ≡ m mod n For

any integers k,m with 0<m<n, m
k(p-1)(q-1)+1

 ≡ m mod n

Euler’s theorem provides us the numbers d, e such that M
ed

=M mod n. We have to choose

d,e such that ed=kφ(n)+1, or equivalently, d≡e
-1

mod φ(n)

An example of RSA can be given as,
 Select primes: p=17 & q=11

 Compute n = pq =17×11=187

 Compute ø(n)=(p–1)(q-1)=16×10=160

 Select e : gcd(e,160)=1; choose e=7

 Determine d: de=1 mod 160 and d < 160 Value is d=23 since 23×7=161= 10×160+1

 Publish public key KU={7,187}

 Keep secret private key KR={23,187}

 Now, given message M = 88 (nb. 88<187)

 encryption: C = 88
7
 mod 187 = 11

 decryption: M = 11
23

 mod 187 = 88

Another example of RSA is given as,

Let p = 11, q = 13, e = 11, m = 7

n = pq i.e. n= 11*13 = 143

ø(n)= (p-1)(q-1) i.e. (11-1)(13-1) = 120

e.d=1 mod ø(n) i.e. 11d mod 120 = 1 i.e. (11*11) mod 120=1; so d = 11

public key :{11,143} and private key: {11,143}

C=M
e
 mod n, so ciphertext = 7

11
mod143 = 727833 mod 143; i.e. C = 106

M=C
d

 mod n, plaintext = 106
11

 mod 143 = 1008 mod 143; i.e. M = 7

 7

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

Another example is:

For RSA key generation,

 users of RSA must:

– determine two primes at random - p, q

– select either e or d and compute the other

 primes p,q must not be easily derived from modulus N=p.q

– means must be sufficiently large

– typically guess and use probabilistic test

 exponents e, d are inverses, so use Inverse algorithm to compute the other

Security of RSA

There are three main approaches of attacking RSA algorithm.

Brute force key search (infeasible given size of numbers)

As explained before, involves trying all possible private keys. Best defence is using

large keys.

Mathematical attacks (based on difficulty of computing ø(N), by factoring modulus N)

There are several approaches, all equivalent in effect to factoring the product of two

primes. Some of them are given as:

– factor N=p.q, hence find ø(N) and then d

– determine ø(N) directly and find d

– find d directly

The possible defense would be using large keys and also choosing large numbers for p and

q, which should differ only by a few bits and are also on the order of magnitude 10
75

 to

10
100

. And gcd (p-1, q-1) should be small.

 8

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

Timing attacks (on running of decryption)

These attacks involve determination of a private key by keeping track of how long a

computer takes to decipher a message (ciphertext-only attack) –this is essentially an attack

on the fast exponentiation algorithm but can be adapted for any other algorithm. Though

these attacks are a quite serious threat, there are some simple countermeasures that can be

used. They are explained below:

Constant exponentiation time:- Ensure that all exponentiations take the same time before

returning a result: degrade performance of the algorithm.

Random Delay:- A random delay can be added to exponentiation algorithm to confuse the

timing attack. If there is not enough noise added by defenders, the attackers can succeed.

Blinding:- Multiply the ciphertext by a random number before performing exponentiation –

in this way the attacker does not know the input to the exponentiation algorithm.

RSA Data Security incorporates a blinding feature into some of its products. The private-key

operation M = C
d

 mod n is implemented as follows:

 Generate a secret random number r between 0 and n-1

 Compute C’=C(r
e
) mod n where e is the public exponent

 Compute M’=(C’
d
) mod n with the ordinary exponentiation

 Compute M=M’r
-1

mod n

 Reported performance penalty: 2 to 10%

Key Management

One of the major roles of public-key encryption has been to address the problem of key

distribution. Two distinct aspects to use of public key encryption are present.

 The distribution of public keys.

 Use of public-key encryption to distribute secret keys.

Distribution of Public Keys

The most general schemes for distribution of public keys are given below

 9

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

PUBLIC ANNOUNCEMENT OF PUBLIC KEYS

Here any participant can send his or her public key to any other participant or

broadcast the key to the community at large. For example, many PGP users have adopted

the practice of appending their public key to messages that they send to public forums.

Though this approach seems convenient, it has a major drawback. Anyone can forge

such a public announcement. Some user could pretend to be user A and send a public key to

another participant or broadcast such a public key. Until the time when A discovers about

the forgery and alerts other participants, the forger is able to read all encrypted messages

intended for A and can use the forged keys for authentication.

PUBLICLY AVAILABLE DIRECTORY

A greater degree of security can be achieved by maintaining a publicly available

dynamic directory of public keys. Maintenance and distribution of the public directory

would have to be the responsibility of some trusted entity or organization. It includes the

following elements:

1. The authority maintains a directory with a {name, public key} entry for each participant.

2. Each participant registers a public key with the directory authority. Registration would

have to be in person or by some form of secure authenticated communication.

 10

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

3. A participant may replace the existing key with a new one at any time, either because of

the desire to replace a public key that has already been used for a large amount of data, or

because the corresponding private key has been compromised in some way.

4. Participants could also access the directory electronically. For this purpose, secure,

authenticated communication from the authority to the participant is mandatory.

This scheme has still got some vulnerabilities. If an adversary succeeds in obtaining

or computing the private key of the directory authority, the adversary could authoritatively

pass out counterfeit public keys and subsequently impersonate any participant and

eavesdrop on messages sent to any participant. Or else, the adversary may tamper with the

records kept by the authority.

PUBLIC-KEY AUTHORITY

Stronger security for public-key distribution can be achieved by providing tighter

control over the distribution of public keys from the directory. This scenario assumes the

existence of a public authority (whoever that may be) that maintains a dynamic directory of

public keys of all users. The public authority has its own (private key, public key) that it is

using to communicate to users. Each participant reliably knows a public key for the

authority, with only the authority knowing the corresponding private key.

For example, consider that Alice and Bob wish to communicate with each other and the

following steps take place and are also shown in the figure below:

 11

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

1.) Alice sends a timestamped message to the central authority with a request for Bob’s

public key (the time stamp is to mark the moment of the request)

2.) The authority sends back a message encrypted with its private key (for

authentication) –message contains Bob’s public key and the original message of Alice

–this way Alice knows this is not a reply to an old request;

3.) Alice starts the communication to Bob by sending him an encrypted message

containing her identity IDA and a nonce N1 (to identify uniquely this transaction)

4.) Bob requests Alice’s public key in the same way (step 1)

5.) Bob acquires Alice’s public key in the same way as Alice did. (Step-2)

6.) Bob replies to Alice by sending an encrypted message with N1 plus a new generated

nonce N2 (to identify uniquely the transaction)

7.) Alice replies once more encrypting Bob’s nonce N2 to assure bob that its

correspondent is Alice

Thus, a total of seven messages are required. However, the initial four messages need

be used only infrequently because both A and B can save the other's public key for future

use, a technique known as caching. Periodically, a user should request fresh copies of the

public keys of its correspondents to ensure currency.

PUBLIC-KEY CERTIFICATES

 12

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

The above technique looks attractive, but still has some drawbacks. For any

communication between any two users, the central authority must be consulted by both

users to get the newest public keys i.e. the central authority must be online 24 hours/day. If

the central authority goes offline, all secure communications get to a halt. This clearly leads

to an undesirable bottleneck.

A further improvement is to use certificates, which can be used to exchange keys

without contacting a public-key authority, in a way that is as reliable as if the keys were

obtained directly from a public-key authority. A certificate binds an identity to public key,

with all contents signed by a trusted Public-Key or Certificate Authority (CA). A user can

present his or her public key to the authority in a secure manner, and obtain a certificate.

The user can then publish the certificate. Anyone needed this user's public key can obtain

the certificate and verify that it is valid by way of the attached trusted signature. A

participant can also convey its key information to another by transmitting its certificate.

Other participants can verify that the certificate was created by the authority.

This certificate issuing scheme does have the following requirements:

1. Any participant can read a certificate to determine the name and public key of the

certificate's owner.

2. Any participant can verify that the certificate originated from the certificate

authority and is not counterfeit.

3. Only the certificate authority can create and update certificates.

4. Any participant can verify the currency of the certificate.

 13

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

Application must be in person or by some form of secure authenticated communication. For

participant A, the authority provides a certificate of the form

CA = E(PRauth, [T||IDA||PUa])

where PRauth is the private key used by the authority and T is a timestamp. A may then pass

this certificate on to any other participant, who reads and verifies the certificate as follows:

D(PUauth, CA) = D(PUauth, E(PRauth, [T||IDA||PUa])) = (T||IDA||PUa)

The recipient uses the authority's public key, PUauth to decrypt the certificate.

Because the certificate is readable only using the authority's public key, this verifies that the

certificate came from the certificate authority. The elements IDA and PUa provide the

recipient with the name and public key of the certificate's holder. The timestamp T validates

the currency of the certificate. The timestamp counters the following scenario. A's private

key is learned by an adversary. A generates a new private/public key pair and applies to the

certificate authority for a new certificate. Meanwhile, the adversary replays the old

certificate to B. If B then encrypts messages using the compromised old public key, the

adversary can read those messages. In this context, the compromise of a private key is

comparable to the loss of a credit card. The owner cancels the credit card number but is at

risk until all possible communicants are aware that the old credit card is obsolete. Thus, the

timestamp serves as something like an expiration date. If a certificate is sufficiently old, it is

assumed to be expired.

 14

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

One scheme has become universally accepted for formatting public-key certificates:

the X.509 standard. X.509 certificates are used in most network security applications,

including IP security, secure sockets layer (SSL), secure electronic transactions (SET), and

S/MIME.

Public Key Distribution of Secret Keys

Public-key encryption is usually viewed as a vehicle for the distribution of secret keys

to be used for conventional encryption and the main reason for this is the relatively slow

data rates associated with public-key encryption.

Simple Secret Key Distribution:

If A wishes to communicate with B, the following procedure is employed:
1. A generates a public/private key pair {PUa, PRa} and transmits a message to B consisting

of PUa and an identifier of A, IDA.
2. B generates a secret key, Ks, and transmits it to A, encrypted with A's public key.
3. A computes D(PRa, E(PUa, Ks)) to recover the secret key. Because only A can decrypt the

message, only A and B will know the identity of Ks.
4. A discards PUa and PRa and B discards PUa.

In this case, if an adversary, E, has control of the intervening communication channel, then E

can compromise the communication in the following fashion without being detected:

1. A generates a public/private key pair {PUa, PRa} and transmits a message intended

for B consisting of PUa and an identifier of A, IDA.
2. E intercepts the message, creates its own public/private key pair {PUe, PRe} and

transmits PUe||IDA to B.
3. B generates a secret key, Ks, and transmits E(PUe, Ks).

4. E intercepts the message, and learns Ks by computing D(PRe, E(PUe, Ks)).

5. E transmits E(PUa, Ks) to A.

The result is that both A and B know Ks and are unaware that Ks has also been revealed to E.

A and B can now exchange messages using Ks E no longer actively interferes with the

communications channel but simply eavesdrops. Knowing Ks E can decrypt all messages,

and both A and B are unaware of the problem. Thus, this simple protocol is only useful in an
environment where the only threat is eavesdropping.

 15

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

Secret Key Distribution with Confidentiality and Authentication

It is assumed that A and B have exchanged public keys by one of the schemes described

earlier. Then the following steps occur:

1. A uses B's public key to encrypt a message to B containing an identifier of A (IDA) and a

nonce (N1), which is used to identify this transaction uniquely.

2. B sends a message to A encrypted with PUa and containing A's nonce (N1) as well as a

new nonce generated by B (N2) Because only B could have decrypted message (1), the

presence of N1 in message (2) assures A that the correspondent is B.
3. A returns N2 encrypted using B's public key, to assure B that its correspondent is A.
4. A selects a secret key Ks and sends M = E(PUb, E(PRa, Ks)) to B. Encryption of this

message with B's public key ensures that only B can read it; encryption with A's private
key ensures that only A could have sent it.

5. B computes D(PUa, D(PRb, M)) to recover the secret key.

The result is that this scheme ensures both confidentiality and authentication in the

exchange of a secret key.

Diffie-Hellman Key Exchange

Diffie-Hellman key exchange (D-H) is a cryptographic protocol that allows two parties that

have no prior knowledge of each other to jointly establish a shared secret key over an

insecure communications channel. This key can then be used to encrypt subsequent

communications using a symmetric key cipher. The D-H algorithm depends for its

effectiveness on the difficulty of computing discrete logarithms.

First, a primitive root of a prime number p, can be defined as one whose powers generate

all the integers from 1 to p-1. If a is a primitive root of the prime number p, then the

 16

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

numbers, a mod p, a
2
 mod p,..., a

p-1
 mod p, are distinct and consist of the integers from 1

through p 1 in some permutation.

For any integer b and a primitive root a of prime number p, we can find a unique exponent i

such that .The exponent i is referred to as the discrete

logarithm of b for the base a, mod p. We express this value as dloga,p (b). The algorithm is
summarized below:

For this scheme, there are two publicly known numbers: a prime number q and an integer α

that is a primitive root of q. Suppose the users A and B wish to exchange a key. User A

selects a random integer XA < q and computes YA = α
XA

 mod q. Similarly, user B

independently selects a random integer XA < q and computes YB = α
XB

 mod q. Each side

keeps the X value private and makes the Y value available publicly to the other side. User A

computes the key as K = (YB)
XA

 mod q and user B computes the key as K = (YA)
XB

 mod q.

These two calculations produce identical results.

 17

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

Discrete Log Problem

The (discrete) exponentiation problem is as follows: Given a base a, an exponent b and a

modulus p, calculate c such that a
b
 ≡ c (mod p) and 0 ≤ c < p. It turns out that this problem is

fairly easy and can be calculated "quickly" using fast-exponentiation.

The discrete log problem is the inverse problem:

Given a base a, a result c (0 ≤ c < p) and a modulus p, calculate the exponent b such that

a
b
 ≡ c (mod p).

It turns out that no one has found a quick way to solve this problem

With DLP, if P had 300 digits, Xa and Xb have more than 100 digits, it would take longer
than the life of the universe to crack the method.
Examples for D-H key distribution scheme:

1) Let p = 37 and g = 13.

Let Alice pick a = 10. Alice calculates 13
10

 (mod 37) which is 4 and sends that to Bob.

Let Bob pick b = 7. Bob calculates 13
7
 (mod 37) which is 32 and sends that to Alice.

(Note: 6 and 7 are secret to Alice and Bob, respectively, but both 4 and 32 are known by all.)

 Alice receives 32 and calculates 32
10

 (mod 37) which is 30, the secret key.

 Bob receives 4 and calculates 4
7
 (mod 37) which is 30, the same secret key.

2) Let p = 47 and g = 5.

Let Alice pick a = 18. Alice calculates 5
18

 (mod 47) which is 2 and sends that to Bob.

Let Bob pick b = 22. Bob calculates 5
22

 (mod 47) which is 28 and sends that to Alice.

 Alice receives 28 and calculates 28
18

 (mod 47) which is 24, the secret key.

 Bob receives 2 and calculates 2
22

 (mod 47) which is 24, the same secret key

Man-in-the-Middle Attack on D-H protocol

Suppose Alice and Bob wish to exchange keys, and Darth is the adversary. The attack

proceeds as follows:

1. Darth prepares for the attack by generating two random private keys XD1 and XD2

and then computing the corresponding public keys YD1 and YD2.
2. Alice transmits YA to Bob.
3. Darth intercepts YA and transmits YD1 to Bob. Darth also calculates K2 = (YA)

X
D2mod q.

4. Bob receives YD1 and calculates K1 = (YD1)
X

E mod q.

5. Bob transmits XA to Alice.

6. Darth intercepts XA and transmits YD2 to Alice. Darth calculates K1 = (YB)
X

D1 mod q.

7. Alice receives YD2 and calculates K2 = (YD2)
X

A mod q.

 18

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

At this point, Bob and Alice think that they share a secret key, but instead Bob and Darth

share secret key K1 and Alice and Darth share secret key K2. All future communication

between Bob and Alice is compromised in the following way:

1. Alice sends an encrypted message M: E(K2, M).
2. Darth intercepts the encrypted message and decrypts it, to recover M.

3. Darth sends Bob E(K1, M) or E(K1, M'), where M' is any message. In the first case,

Darth simply wants to eavesdrop on the communication without altering it. In the

second case, Darth wants to modify the message going to Bob.

The key exchange protocol is vulnerable to such an attack because it does not authenticate

the participants. This vulnerability can be overcome with the use of digital signatures and

public-key certificates.

Elliptic Curve Cryptography (ECC)

Elliptic curve cryptography (ECC) is an approach to public-key cryptography based on the

algebraic structure of elliptic curves over finite fields. The use of elliptic curves in

cryptography was suggested independently by Neal Koblitz and Victor S. Miller in 1985. The

principal attraction of ECC compared to RSA is that it appears to offer equal security for a far

smaller bit size, thereby reducing the processing overhead.

Elliptic Curve over GF(p)

Let GF(p) be a finite field, p > 3, and let a, b GF(p) are constant such that 4a
3
 + 27b

2
 0

(mod p).

An elliptic curve, E(a,b)(GF(p)), is defined as the set of points (x,y) GF(p) * GF(p)

which satisfy the equation y
2
 x

3
 + ax + b (mod p), together with a special point, O, called

the point at infinity.

Let P and Q be two points on E(a,b)(GF(p)) and O is the point at infinity.
• P+O = O+P = P

• If P = (x1,y1) then -P = (x1 ,-y1) and P + (-P) = O.

• If P = (x1,y1) and Q = (x2,y2), and P and Q are not O.

then P +Q = (x3 ,y3) where

x3 =
2
 - x1 - x2

y3 = (x1 - x3) - y1

and = (y2-y1)/(x2-x1) if P ≠ Q

 = (3x1
2
+a)/ 2y1 if P = Q

y

2 y1 for _ x x

2

 x1
1

 x2

 3x
2
 a

 1

for _ x1 x2

 2 y

 1

 19

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

An elliptic curve may be defined over any finite field GF(q). For GF(2
m

), the curve has a

different form:- y
2
 + xy = x

3
 + ax

2
 + b, where b 0.

Cryptography with Elliptic Curves

The addition operation in ECC is the counterpart of modular multiplication in RSA,

and multiple addition is the counterpart of modular exponentiation. To form a cryptographic

system using elliptic curves, some kind of hard problem such as discrete logarithm or

factorization of prime numbers is needed. Considering the equation, Q=kP, where Q,P are

points in an elliptic curve, it is “easy” to compute Q given k,P , but “hard” to find k given Q,P.

This is known as the elliptic curve logarithm problem. k could be so large as to make brute-

force fail.

ECC Key Exchange

Pick a prime number p= 2
180

 and elliptic curve parameters a and b for the equation

y
2
 x

3
 + ax + b (mod p) which defines the elliptic group of points Ep(a,b). Select generator

point G=(x1,y1) in Ep(a,b) such that the smallest value for which nG=O be a very large prime

number. Ep(a,b) and G are parameters of the cryptosystem known to all participants. The
following steps take place:

• A & B select private keys nA<n, nB<n

• compute public keys: PA=nA×G, PB=nB×G

• compute shared key: K=nA×PB, K=nB×PA {same since K=nA×nB×G }

ECC Encryption/Decryption

As with key exchange system, an encryption/decryption system requires a point G and and

elliptic group Ep(a,b) as parameters. First thing to be done is to encode the plaintext

message m to be sent as an x-y point Pm. Each user chooses private key nA<n and computes

public key PA=nA×G. To encrypt and send a message to Pm to B, A chooses a random

positive integer k and produces the ciphertext Cm consisting of the pair of points Cm={kG,

Pm+kPb}. here, A uses B’s public key. To decrypt the ciphertext, B multiplies the first point in
the pair by B’s secret key and subtracts the result from the second point

Pm+kPb – nB(kG) = Pm+k(nBG) – nB(kG) = Pm

A has masked the message Pm by adding kPb to it. Nobody but A knows the value of k, so

even though Pb is a public key, nobody can remove the mask kPb. For an attacker to recover
the message, he has to compute k given G and kG, which is assumed hard.

Security of ECC

To protect a 128 bit AES key it would take a RSA Key Size of 3072 bits whereas an

ECC Key Size of 256 bits.

 20

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

Hence for similar security ECC offers significant computational advantages.

Applications of ECC:

 Wireless communication devices

 Smart cards

 Web servers that need to handle many encryption sessions

 Any application where security is needed but lacks the power, storage
and computational power that is necessary for our current cryptosystems

Digital Signature

The most important development from the work on public-key cryptography is the digital

signature. Message authentication protects two parties who exchange messages from any

third party. However, it does not protect the two parties against each other. A digital

signature is analogous to the handwritten signature, and provides a set of security

capabilities that would be difficult to implement in any other way. It must have the following

properties:

 It must verify the author and the date and time of the signature
 It must to authenticate the contents at the time of the signature
 It must be verifiable by third parties, to resolve disputes

Thus, the digital signature function includes the authentication function. A variety of

approaches has been proposed for the digital signature function. These approaches fall into

two categories: direct and arbitrated.
Direct Digital Signature

Direct Digital Signatures involve the direct application of public-key algorithms involving

only the communicating parties. A digital signature may be formed by encrypting the entire

message with the sender’s private key, or by encrypting a hash code of the message with

the sender’s private key. Confidentiality can be provided by further encrypting the entire

 21

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

message plus signature using either public or private key schemes. It is important to perform

the signature function first and then an outer confidentiality function, since in case of

dispute, some third party must view the message and its signature. But these approaches

are dependent on the security of the sender’s private-key. Will have problems if it is

lost/stolen and signatures forged. Need time-stamps and timely key revocation.

Arbitrated Digital Signature

The problems associated with direct digital signatures can be addressed by using an arbiter,

in a variety of possible arrangements. The arbiter plays a sensitive and crucial role in this

sort of scheme, and all parties must have a great deal of trust that the arbitration

mechanism is working properly. These schemes can be implemented with either private or

public-key algorithms, and the arbiter may or may not see the actual message contents.

Using Conventional encryption

X

A : M || E (Kxa ,[IDx || H (M)])

A

Y : E(Kay ,[IDx || M || E (Kxa ,[IDx ||H(M))]) || T])
 It is assumed that the sender X and the arbiter A share a secret key Kxa and that A and Y share

secret key Kay. X constructs a message M and computes its hash value

H(m) . Then X transmits the message plus a signature to A. the signature consists of

an identifier IDx of X plus the hash value, all encrypted using Kxa.

 A decrypts the signature and checks the hash value to validate the message. Then A
transmits a message to Y, encrypted with Kay. The message includes IDx, the original
message from X, the signature, and a timestamp.

 Arbiter sees message

 Problem : the arbiter could form an alliance with sender to deny a signed message, or with
the receiver to forge the sender’s signature.

Using Public Key Encryption

A : IDx ||E(PRx,[IDx|| E (PUy, E(PRx, M))])

A

Y : E(PRa, [IDx ||E (PUy, E (PRx, M))|| T])
 X double encrypts a message M first with X’s private key,PRx, and then with Y’s

public key, PUy. This is a signed, secret version of the message. This signed message,

together with X’s identifier , is encrypted again with PRx and, together with IDx, is
sent to A. The inner, double encrypted message is secure from the arbiter (and
everyone else except Y)

 A can decrypt the outer encryption to assure that the message must have come from

X (because only X has PRx). Then A transmits a message to Y, encrypted with PRa. The
message includes IDx, the double encrypted message, and a

timestamp.

 Arbiter does not see message

 22

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

Digital Signature Standard (DSS)

The National Institute of Standards and Technology (NIST) has published Federal

Information Processing Standard FIPS 186, known as the Digital Signature Standard (DSS).

The DSS makes use of the Secure Hash Algorithm (SHA) and presents a new digital signature

technique, the Digital Signature Algorithm (DSA). The DSS uses an algorithm that is designed

to provide only the digital signature function and cannot be used for encryption or key

exchange, unlike RSA.

The RSA approach is shown below. The message to be signed is input to a hash function that

produces a secure hash code of fixed length. This hash code is then encrypted using the

sender's private key to form the signature. Both the message and the signature are then

transmitted.

The recipient takes the message and produces a hash code. The recipient also decrypts the

signature using the sender's public key. If the calculated hash code matches the decrypted

signature, the signature is accepted as valid. Because only the sender knows the private key,

only the sender could have produced a valid signature.

The DSS approach also makes use of a hash function. The hash code is provided as input to a
signature function along with a random number k generated for this particular signature.

The signature function also depends on the sender's private key (PRa) and a set of

parameters known to a group of communicating principals. We can consider this set to

constitute a global public key (PUG).The result is a signature consisting of two components,

labeled s and r.

At the receiving end, the hash code of the incoming message is generated. This plus the
signature is input to a verification function. The verification function also depends on the

global public key as well as the sender's public key (PUa), which is paired with the sender's

 23

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

private key. The output of the verification function is a value that is equal to the signature

component r if the signature is valid. The signature function is such that only the sender,

with knowledge of the private key, could have produced the valid signature.

KERBEROS

Kerberos is an authentication service developed as part of Project Athena at MIT. It

addresses the threats posed in an open distributed environment in which users at

workstations wish to access services on servers distributed throughout the network. Some

of these threats are:

 A user may gain access to a particular workstation and pretend to be another user
operating from that workstation.

 A user may alter the network address of a workstation so that the requests sent
from the altered workstation appear to come from the impersonated workstation.

 A user may eavesdrop on exchanges and use a replay attack to gain entrance to a
server or to disrupt operations.

Two versions of Kerberos are in current use: Version-4 and Version-5. The first published report on
Kerberos listed the following requirements:

 Secure: A network eavesdropper should not be able to obtain the necessary
information to impersonate a user. More generally, Kerberos should be strong
enough that a potential opponent does not find it to be the weak link.

 Reliable: For all services that rely on Kerberos for access control, lack of availability of

the Kerberos service means lack of availability of the supported services. Hence,

Kerberos should be highly reliable and should employ a distributed server

architecture, with one system able to back up another.

 Transparent: Ideally, the user should not be aware that authentication is taking place,
beyond the requirement to enter a password.

 Scalable: The system should be capable of supporting large numbers of clients and
servers. This suggests a modular, distributed architecture

Two versions of Kerberos are in common use: Version 4 is most widely used version. Version

5 corrects some of the security deficiencies of Version 4. Version 5 has been issued as a

draft Internet Standard (RFC 1510)

 24

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

Kerberos Version 4

1.) Simple dialogue:

More Secure Dialogue

 25

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

The Version 4 Authentication Dialogue

The full Kerberos v4 authentication dialogue is shown here divided into 3 phases.

There is a problem of captured ticket-granting tickets and the need to determine that the

ticket presenter is the same as the client for whom the ticket was issued. An efficient way of

doing this is to use a session encryption key to secure information.

Message (1) includes a timestamp, so that the AS knows that the message is timely.

Message (2) includes several elements of the ticket in a form accessible to C. This enables C

to confirm that this ticket is for the TGS and to learn its expiration time. Note that the ticket

does not prove anyone's identity but is a way to distribute keys securely. It is the

authenticator that proves the client's identity. Because the authenticator can be used only

once and has a short lifetime, the threat of an opponent stealing both the ticket and the

authenticator for presentation later is countered. C then sends the TGS a message that

includes the ticket plus the ID of the requested service (message 3). The reply from the TGS,

in message (4), follows the form of message (2). C now has a reusable service-granting ticket

for V. When C presents this ticket, as shown in message (5), it also sends an authenticator.

 26

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

The server can decrypt the ticket, recover the session key, and decrypt the authenticator. If

mutual authentication is required, the server can reply as shown in message (6).

Overview of Kerberos

Kerberos Realms

A full-service Kerberos environment consisting of a Kerberos server, a number of clients,

and a number of application servers is referred to as a Kerberos realm. A Kerberos realm is a

set of managed nodes that share the same Kerberos database, and are part of the same

administrative domain. If have multiple realms, their Kerberos servers must share keys and

trust each other.

The following figure shows the authentication messages where service is being

requested from another domain. The ticket presented to the remote server indicates the

realm in which the user was originally authenticated. The server chooses whether to honor

the remote request. One problem presented by the foregoing approach is that it does not

scale well to many realms, as each pair of realms need to share a key.

 27

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

The limitations of Kerberos version-4 are categorised into two types:
 Environmental shortcomings of Version 4:

– Encryption system dependence: DES

– Internet protocol dependence

– Ticket lifetime

– Authentication forwarding

– Inter-realm authentication

 Technical deficiencies of Version 4:

– Double encryption

– Session Keys

– Password attack

Kerberos version 5

Kerberos Version 5 is specified in RFC 1510 and provides a number of improvements over

version 4 in the areas of environmental shortcomings and technical deficiencies. It includes

some new elements such as:
 Realm: Indicates realm of the user

 Options

 Times

– From: the desired start time for the ticket

– Till: the requested expiration time

– Rtime: requested renew-till time

 Nonce: A random value to assure the response is fresh

 28

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

The basic Kerberos version 5 authentication dialogue is shown here First, consider the
authentication service exchange.

Message (1) is a client request for a ticket-granting ticket.

Message (2) returns a ticket-granting ticket, identifying information for the client, and a

block encrypted using the encryption key based on the user's password. This block includes

the session key to be used between the client and the TGS.
Now compare the ticket-granting service exchange for versions 4 and 5. See that message

(3) for both versions includes an authenticator, a ticket, and the name of the requested

service. In addition, version 5 includes requested times and options for the ticket and a

nonce, all with functions similar to those of message (1). The authenticator itself is

essentially the same as the one used in version 4. Message (4) has the same structure as

message (2), returning a ticket plus information needed by the client, the latter encrypted

with the session key now shared by the client and the TGS. Finally, for the client/server

authentication exchange, several new features appear in version 5, such as a request for

mutual authentication. If required, the server responds with message (6) that includes the

timestamp from the authenticator. The flags field included in tickets in version 5 supports

expanded functionality compared to that available in version 4.

 29

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

Advantages of Kerberos:
 User's passwords are never sent across the network, encrypted or in plain text

 Secret keys are only passed across the network in encrypted form

 Client and server systems mutually authenticate

 It limits the duration of their users' authentication.

 Authentications are reusable and durable

 Kerberos has been scrutinized by many of the top programmers,
cryptologists and security experts in the industry

X.509 Authentication Service

ITU-T recommendation X.509 is part of the X.500 series of recommendations that define a

directory service. The directory is, in effect, a server or distributed set of servers that

maintains a database of information about users. The information includes a mapping from

user name to network address, as well as other attributes and information about the users.

X.509 is based on the use of public-key cryptography and digital signatures.

The heart of the X.509 scheme is the public-key certificate associated with each user.

These user certificates are assumed to be created by some trusted certification authority

(CA) and placed in the directory by the CA or by the user. The directory server itself is not

responsible for the creation of public keys or for the certification function; it merely

provides an easily accessible location for users to obtain certificates.

 30

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

The general format of a certificate is shown above, which includes the following elements:
 version 1, 2, or 3

 serial number (unique within CA) identifying certificate

 signature algorithm identifier

 issuer X.500 name (CA)

 period of validity (from - to dates)

 subject X.500 name (name of owner)

 subject public-key info (algorithm, parameters, key)

 issuer unique identifier (v2+)

 subject unique identifier (v2+)

 extension fields (v3)

 signature (of hash of all fields in certificate)

The standard uses the following notation to define a certificate:

CA<<A>> = CA {V, SN, AI, CA, TA, A, Ap}

Where,

Y <<X>> = the certificate of user X issued by certification authority Y

Y {I} = the signing of I by Y. It consists of I with an encrypted

hash code appended

User certificates generated by a CA have the following characteristics:
 Any user with CA’s public key can verify the user public key that was certified

 No party other than the CA can modify the certificate without being detected

 because they cannot be forged, certificates can be placed in a public directory

Scenario: Obtaining a User Certificate

If both users share a common CA then they are assumed to know its public key. Otherwise

CA's must form a hierarchy and use certificates linking members of hierarchy to validate

other CA's. Each CA has certificates for clients (forward) and parent (backward). Each client

trusts parents certificates. It enables verification of any certificate from one CA by users of

all other CAs in hierarchy.

A has obtained a certificate from the CA X1. B has obtained a certificate from the CA X2. A

can read the B’s certificate but cannot verify it. In order to solve the problem ,the Solution:

X1<<X2> X2<>. A obtain the certificate of X2 signed by X1 from directory.

obtain X2’s public key. A

goes back to directory and obtain the certificate of B signed by X2.

obtain
B’s public key securely. The directory entry for each CA includes two types of

certificates: Forward certificates: Certificates of X generated by other CAs
Reverse certificates: Certificates generated by X that are the certificates of other CAs

 31

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

X.509 CA Hierarchy

A acquires B certificate using

chain:

X<<W>>W<<V>>V<<Y>>Y<<
Z>> Z<>

B acquires A certificate using

chain:

Z<<Y>>Y<<V>>V<<W>>W<<

X>> X<<A>>

Revocation of Certificates

Typically, a new certificate is issued just before the expiration of the old one. In addition, it

may be desirable on occasion to revoke a certificate before it expires, for one of the

following reasons:
 The user's private key is assumed to be compromised.

 The user is no longer certified by this CA.

 The CA's certificate is assumed to be compromised.

Each CA must maintain a list consisting of all revoked but not expired certificates issued by

that CA, including both those issued to users and to other CAs. These lists should also be

posted on the directory.

Each certificate revocation list (CRL) posted to the directory is signed by the issuer and

includes the issuer's name, the date the list was created, the date the next CRL is scheduled

to be issued, and an entry for each revoked certificate. Each entry consists of the serial

number of a certificate and revocation date for that certificate. Because serial numbers are

unique within a CA, the serial number is sufficient to identify the certificate.

 32

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

Authentication Procedures

X.509 also includes three alternative authentication procedures that are intended for use

across a variety of applications. All these procedures make use of public-key signatures. It is

assumed that the two parties know each other's public key, either by obtaining each other's

certificates from the directory or because the certificate is included in the initial message

from each side.

1. One-Way Authentication: One way authentication involves a single transfer of
information from one user (A) to another (B), and establishes the details shown above. Note

that only the identity of the initiating entity is verified in this process, not that of the

responding entity. At a minimum, the message includes a timestamp ,a nonce, and the

identity of B and is signed with A’s private key. The message may also include information to

be conveyed, such as a session key for B.

2. Two-Way Authentication: Two-way authentication thus permits both parties in a

communication to verify the identity of the other, thus additionally establishing the above

details. The reply message includes the nonce from A, to validate the reply. It also includes a

timestamp and nonce generated by B, and possible additional information for A.

 33

Information Security Unit-3 Public Key Cryptography

Digital Signatures, Kerberos, X.509

3. Three-Way Authentication: Three-Way Authentication includes a final message
from A to B, which contains a signed copy of the nonce, so that timestamps need not be

checked, for use when synchronized clocks are not available.

X.509 Version 3

The X.509 version 2 format does not convey all of the information that recent design and

implementation experience has shown to be needed.

\endash The Subject field is inadequate to convey the identity of a key owner to a

public-key user. X.509 names may be relatively short and lacking in obvious

identification details that may be needed by the user.

\endash The Subject field is also inadequate for many applications, which typically

recognize entities by an Internet e-mail address, a URL, or some other Internet-related

identification.

\endash There is a need to indicate security policy information. This enables a security

application or function, such as IPSec, to relate an X.509 certificate to a given policy.

\endash There is a need to limit the damage that can result from a faulty or malicious

CA by setting constraints on the applicability of a particular certificate.

\endash It is important to be able to identify different keys used by the same owner at
different

times. This feature supports key life cycle management, in particular the ability to

update key pairs for users and CAs on a regular basis or under exceptional

circumstances.

Rather than continue to add fields to a fixed format, standards developers felt that a more

flexible approach was needed. X.509 version 3 includes a number of optional extensions

that may be added to the version 2 format. Each extension consists of an extension

identifier, a criticality indicator, and an extension value. The criticality indicator indicates

whether an extension can be safely ignored or not.

 34

Pretty Good Privacy

E-MAIL PRIVACY (Unit-4)

In virtually all distributed environments, electronic mail is the most heavily used

network-based application. But current email services are roughly like "postcards”, anyone

who wants could pick it up and have a look as it’s in transit or sitting in the recipients

mailbox. PGP provides a confidentiality and authentication service that can be used for

electronic mail and file storage applications. With the explosively growing reliance on

electronic mail for every conceivable purpose, there grows a demand for authentication and

confidentiality services.

The Pretty Good Privacy (PGP) secure email program, is a remarkable phenomenon,

has grown explosively and is now widely used. Largely the effort of a single person, Phil

Zimmermann, who selected the best available crypto algorithms to use & integrated them

into a single program, PGP provides a confidentiality and authentication service that can be

used for electronic mail and file storage applications. It is independent of government

organizations and runs on a wide range of systems, in both free & commercial versions.

There are five important services in PGP

 Authentication (Sign/Verify)

 Confidentiality (Encryption/Decryption)

 Compression

 Email compatibility

 Segmentation and Reassembly
The last three aretransparentto the user

PGP Notations:

Ks =session key used in symmetric encryption scheme

PRa =private key of user A, used in public-key encryption scheme

PUa =public key of user A, used in public-key encryption scheme

EP = public-key encryption

DP = public-key decryption

EC = symmetric encryption

DC = symmetric decryption

H = hash function

|| = concatenation

Z = compression using ZIP algorithm R64 =

conversion to radix 64 ASCII format

1

E-MAIL PRIVACY (Unit-4)

PGP Operation- Authentication

1. sender creates message

2. use SHA-1 to generate 160-bit hash of message

3. signed hash with RSA using sender's private key, and is attached to message

4. receiver uses RSA with sender's public key to decrypt and recover hash code

5. receiver verifies received message using hash of it and compares with decrypted

hash code

PGP Operation- Confidentiality

Sender:

1. Generates message and a random number (session key) only for this message
2. Encrypts message with the session key using AES, 3DES, IDEA or CAST-128
3. Encrypts session key itself with recipient’s public key using RSA
4. Attaches it to message

Receiver:

1. Recovers session key by decrypting using his private key
2. Decrypts message using the session key

2

E-MAIL PRIVACY (Unit-4)

Confidentiality service provides no assurance to the receiver as to the identity of sender
(i.e. no authentication). Only provides confidentiality for sender that only the recipient can
read the message (and no one else)

PGP Operation – Confidentiality & Authentication

can use both services on same message

o create signature & attach to message
o encrypt both message & signature
o attach RSA/ElGamal encrypted session key

o is called authenticated confidentiality

PGP Operation – Compression

As a default, PGP compresses the message after applying the signature but before

encryption. This has the benefit of saving space both for e-mail transmission and for file

storage. The placement of the compression algorithm, indicated by Z for compression and Z
-

1
 for decompression is critical. The compression algorithm used is ZIP.

 The signature is generated before compression for two reasons:

1. so that one can store only the uncompressed message together with signature
for later verification

2. Applying the hash function and signature after compression would constrain
all PGP implementations to the same version of the compression algorithm as
the PGP compression algorithm is not deterministic

 Message encryption is applied after compression to strengthen cryptographic

security. Because the compressed message has less redundancy than the original
plaintext, cryptanalysis is more difficult.

3

E-MAIL PRIVACY (Unit-4)

PGP Operation – Email Compatibility
When PGP is used, at least part of the block to be transmitted is encrypted, and thus

consists of a stream of arbitrary 8-bit octets. However many electronic mail systems only

permit the use of ASCII text. To accommodate this restriction, PGP provides the service of

converting the raw 8-bit binary stream to a stream of printable ASCII characters. It uses

radix-64 conversion, in which each group of three octets of binary data is mapped into four

ASCII characters. This format also appends a CRC to detect transmission errors. The use of

radix 64 expands a message by 33%, but still an overall compression of about one-third can

be achieved.

PGP Operation - Segmentation/Reassembly

E-mail facilities often are restricted to a maximum message length. For example,
many of the facilities accessible through the Internet impose a maximum length of 50,000
octets. Any message longer than that must be broken up into smaller segments, each of
which is mailed separately.

To accommodate this restriction, PGP automatically subdivides a message that is too
large into segments that are small enough to send via e-mail. The segmentation is done
after all of the other processing, including the radix-64 conversion. Thus, the session key
component and signature component appear only once, at the beginning of the first
segment. Reassembly at the receiving end is required before verifying signature or
decryption

PGP Operations – Summary

4

www.jntuworld.com

E-MAIL PRIVACY (Unit-4)

Cryptographic Keys and Key Rings

PGP makes use of four types of keys: one-time session symmetric keys, public keys, private

keys, and passphrase-based symmetric keys. Three separate requirements can be identified

with respect to these keys:

1. a means of generating unpredictable session keys is needed.
2. a user is allowed to have multiple public-key/private-key pairs.
3. Each PGP entity must maintain a file of its own public/private key pairs as well as a

file of public keys of correspondents.

PGP Session Keys

Each session key is associated with a single message and is used only for the purpose

of encrypting and decrypting that message. Random numbers are generated using the

algorithm specified in ANSI X12.17, with inputs based on keystroke input from the user,

where both the keystroke timing and the actual keys struck are used to generate a

randomized stream of numbers.

Key Identifiers

In PGP, any given user may have multiple public/private key pairs. That means, a

user may have many public/private key pairs at his disposal. He wishes to encrypt or sign a

message using one of his keys. But, the problem of informing the other party, which key he

has used arises. Attaching the whole public key every time is inefficient. Rather PGP uses a

key identifier based on the least significant 64-bits of the key, which will very likely be

5

E-MAIL PRIVACY (Unit-4)

unique. That is, the key ID of public PUa is (PUa mod 2
64

). Then only the much shorter key ID

would need to be transmitted with any message. A key ID is also required for the PGP digital
signature.

PGP Message Format

A message consists of three components: the message component, a signature (optional),

and a session key component (optional).

The message component includes the actual data to be stored or transmitted, as well as a

filename and a timestamp that specifies the time of creation. The signature component

includes the following:

 Timestamp: The time at which the signature was made.

 Message digest: The 160-bit SHA-1 digest, encrypted with the sender's private
signature key.

 Leading two octets of message digest: To enable the recipient to determine if the
correct public key was used to decrypt the message digest for authentication, by
comparing this plaintext copy of the first two octets with the first two octets of the
decrypted digest. These octets also serve as a 16-bit frame check sequence for the
message.

 Key ID of sender's public key: Identifies the public key that should be used to decrypt
the message digest and, hence, identifies the private key that was used to encrypt
the message digest

6

E-MAIL PRIVACY (Unit-4)

The session key component includes the session key and the identifier of the recipient's
public key that was used by the sender to encrypt the session key. The entire block is usually
encoded with radix-64 encoding.

PGP Key Rings

Keys & key IDs are critical to the operation of PGP. These keys need to be stored and

organized in a systematic way for efficient and effective use by all parties. PGP uses a pair of

data structures, one to store the user’s public/private key pairs - their private-key ring; and

one to store the public keys of other known users, their public-key ring.

General Structure of Private- and Public-Key Rings

a) Private-Key Ring

The Private-Key ring can be viewed as a table, in which each row represents one of the

public/private key pairs owned by this user. Each row contains the following entries:

• Timestamp: The date/time when this key pair was generated.
• Key ID: The least significant 64 bits of the public key for this entry.
• Public key: The public-key portion of the pair.
• Private key: The private-key portion of the pair; this field is encrypted.
• User ID: Typically, this will be the user's e-mail address (e.g., stallings@acm.org).

However, the user may choose to associate a different name with each pair (e.g.,
Stallings, WStallings, WilliamStallings, etc.) or to reuse the same User ID more than
once

7

E-MAIL PRIVACY (Unit-4)

The private-key ring is intended to be stored only on the machine of the user that
created and owns the key pairs, and that it be accessible only to that user, it makes sense to
make the value of the private key as secure as possible. Accordingly, the private key itself is
not stored in the key ring. Rather, this key is encrypted using CAST-128 (or IDEA or 3DES).
The procedure is as follows:

1. The user selects a passphrase to be used for encrypting private keys.

2. When the system generates a new public/private key pair using RSA, it asks the user for
the passphrase. Using SHA-1, a 160-bit hash code is generated from the passphrase, and
the passphrase is discarded.

3. The system encrypts the private key using CAST-128 with the 128 bits of the hash code

as the key. The hash code is then discarded, and the encrypted private key is stored in
the private-key ring.

Subsequently, when a user accesses the private-key ring to retrieve a private key, he or she
must supply the passphrase. PGP will retrieve the encrypted private key, generate the hash
code of the passphrase, and decrypt the encrypted private key using CAST-128 with the
hash code. . As in any system based on passwords, the security of this system depends on
the security of the password, which should be not easily guessed but easily remembered.

b) Public-key Ring
This data structure is used to store public keys of other users that are known to this user.

 Timestamp: The date/time when this entry was generated.

 Key ID: The least significant 64 bits of the public key for this entry.

 Public Key: The public key for this entry.

 User ID: Identifies the owner of this key. Multiple user IDs may be associated with a
single public key

E-MAIL PRIVACY (Unit-4)

PGP Message Transmission and Reception

Message transmission

The following figure shows the steps during message transmission assuming that the message is to

be both signed and encrypted.

PGP Message Generation (from User A to User B; no compression or radix 64 conversion)

The sending PGP entity performs the following steps:

1. Signing the message

a. PGP retrieves the sender's private key from the private-key ring using

your_userid as an index. If your_userid was not provided in the command, the
first private key on the ring is retrieved.

b. PGP prompts the user for the passphrase to recover the unencrypted
private key.

c. The signature component of the message is constructed.

2. Encrypting the message

a. PGP generates a session key and encrypts the message.
b. PGP retrieves the recipient's public key from the public-key ring using her_userid

as an index.
c. The session key component of the message is constructed.

9

E-MAIL PRIVACY (Unit-4)

Message Reception

PGP Message Reception (from User A to User B; no compression or radix 64 conversion)

The receiving PGP entity performs the following steps:

1. Decrypting the message

a. PGP retrieves the receiver's private key from the private-key ring, using the Key

ID field in the session key component of the message as an index.
b. PGP prompts the user for the passphrase to recover the unencrypted

private key.
c. PGP then recovers the session key and decrypts the message.

2. Authenticating the message

a. PGP retrieves the sender's public key from the public-key ring, using the Key ID

field in the signature key component of the message as an index.
b. PGP recovers the transmitted message digest.
c. PGP computes the message digest for the received message and compares it to

the transmitted message digest to authenticate.

10

E-MAIL PRIVACY (Unit-4)

Public Key Management

PGP contains a clever, efficient, interlocking set of functions and formats to provide

an effective confidentiality and authentication service and also addresses the problem of

public-key management.

Various Approaches for Public Key Management

A number of approaches are possible for minimizing the risk that a user's public-key

ring contains false public keys. Suppose that A wishes to obtain a reliable public key for B.

The following are some approaches that could be used:

1. B could store her public key (PUb) on a floppy disk and hand it to A. This is a very
secure method but has obvious practical limitations.

2. B could transmit her key in an e-mail message to A. A could have PGP generate a
160-bit SHA-1 digest of the key and display it in hexadecimal format; this is referred
to as the "fingerprint" of the key. A could then call B and ask her to dictate the
fingerprint over the phone. If the two fingerprints match, the key is verified. This is a
more practical approach and for this A has to recognize the voice of B over the
telephone.

3. Obtain B's public key from a mutual trusted individual D. For this purpose, the
introducer, D, creates a signed certificate. The certificate includes B's public key, the
time of creation of the key, and a validity period for the key. D generates an SHA-1
digest of this certificate, encrypts it with her private key, and attaches the signature
to the certificate. Because only D could have created the signature, no one else can
create a false public key and pretend that it is signed by D. The signed certificate
could be sent directly to A by B or D, or could be posted on a bulletin board.

4. Obtain B's public key from a trusted certifying authority. Again, a public key
certificate is created and signed by the authority. A could then access the authority,
providing a user name and receiving a signed certificate.

The Use of Trust

PGP provides a better way of using trust, utilizing trust information and linking trust with

public keys. The information about trust is stored in a ‘trust flag byte’. Its structure consists of three

fields:

1. key legitimacy field – KEYLEGITFIELD
2. signature trust field – SIGTRUST FIELD
3. owner trust field – OWNERTRUST FIELD

11

E-MAIL PRIVACY (Unit-4)

Key Legitimacy Field

It is computed by PGP. This field specifies the level of PGP’s trust about the validity of user’s

public key. Based on the extent of trust, the user ID is bound to the key. A KEYLEGIT field can

hold the following information:

1. unknown or undefined trust
2. key ownership not trusted
3. marginal trust in key ownership
4. complete trust in key ownership

A WARNONLY bit is set if user wants only to be warned when key that is not fully validated
is used for encryption

Signature Trust Field

A key ring owner collects all the signatures that are related to the entries. Each signature
has its own signature-trust-field that specifies the level of PGP user’s trust towards the
signer, so that all its public keys can be certified. A SIGTRUST FIELD can hold values like:

1. undefined trust
2. unknown user
3. usually not trusted to sign other keys
4. usually trusted to sign other keys
5. always trusted to sign other keys
6. this key is present in secret key ring (ultimate trust)

It also has a CONTIG bit that is set if signature tends to a contiguous trusted certification
path that will ultimately reach the trusted key ring owner

Owner Trust Field

Each entry in the public key ring represents a public key that is related to a particular owner
along with a owner-trust-field. This field specifies the extent of trust towards the public key,
so that it can be used to sign other public-key-certificates. User is supposed to assign this
field. An OWNERTRUST field can hold values like:

1. undefined trust
2. unknown user
3. usually not trusted to sign other keys
4. usually trusted to sign other keys
5. always trusted to sign other keys
6. this key is present in secret key ring (ultimate trust)

It also has a BUCKSTOP bit that is automatically set, if the key is present in the secret key
ring.

12

E-MAIL PRIVACY (Unit-4)

Operation of Trust Processing
Consider the public key ring of User-A, then the operation of trust processing is described as

follows:

1. When A inserts a new public key on the public-key ring, PGP must assign a value to
the trust flag that is associated with the owner of this public key. If the owner is A,
and therefore this public key also appears in the private-key ring, then a value of
ultimate trust is automatically assigned to the trust field. Otherwise, PGP asks A for
his assessment of the trust to be assigned to the owner of this key, and A must enter
the desired level. The user can specify that this owner is unknown, untrusted,
marginally trusted, or completely trusted.

2. When the new public key is entered, one or more signatures may be attached to it.

More signatures may be added later. When a signature is inserted into the entry,

PGP searches the public-key ring to see if the author of this signature is among the

known public-key owners. If so, the OWNERTRUST value for this owner is assigned to

the SIGTRUST field for this signature. If not, an unknown user value is assigned
3. The value of the key legitimacy field is calculated on the basis of the signature trust

fields present in this entry. If at least one signature has a signature trust value of

ultimate, then the key legitimacy value is set to complete. Otherwise, PGP computes

a weighted sum of the trust values. A weight of 1/X is given to signatures that are

always trusted and 1/Y to signatures that are usually trusted, where X and Y are

user-configurable parameters. When the total of weights of the introducers of a

key/UserID combination reaches 1, the binding is considered to be trustworthy, and

the key legitimacy value is set to complete. Thus, in the absence of ultimate trust, at

least X signatures that are always trusted or Y signatures that are usually trusted or

some combination is needed.

PGP scans the public key ring in a top-down manner for assuring consistency. Each
OWNERTRUST field is scanned by PGP for all signatures with the authorization of that owner
in order to update SIGTRUST field, so that it becomes equal to the OWNERTRUST field. To
start this process, it selects the keys with ‘ultimate trust’ first and then determines all the
KEYLEGIT fields that are based on the attached signatures.

Revoking Public Keys

When a user suspects that his opponent might have acquired his unencrypted

private key or if he doesn’t want to use the same key for a long period, he must

revoke(cancel) his current public key. In order to revoke a public key, the owner will have to

issue a signed key revocation certificate. To sign this certificate, corresponding private key is

used. This certificate is similar to that of the general signature certificates except that, this

certificate is used for revoking its public key. The owner will then broadcast this certificate

as soon as possible so that others can update their public key rings.

E-MAIL PRIVACY (Unit-4)

PGP “Web of Trust”

The idea behind the various trust fields in the public key ring is to establish a “Web of Trust”
among a community of users.

If Alice trusts only Abe to sign certificates, then she won’t believe certificates from Martha
or Emily are genuine. If she also trusts Bob’s judgment about signing certificates, she can
trust Emily’s certificate; if she also trusts Carl, she can trust everyone’s certificate.

14

S/MIME E-MAIL PRIVACY (Unit-4)

S/MIME (Secure/Multipurpose Internet Mail Extension) is a security enhancement to the

MIME Internet e-mail format standard, which in turn provided support for varying content

types and multi-part messages over the text only support in the original Internet RFC822

email standard. MIME allows encoding of binary data to textual form for transport over

traditional RFC822 email systems. S/MIME is defined in a number of documents, most

importantly RFCs 3369, 3370, 3850 and 3851 and S/MIME support is now included in many

modern mail agents.

RFC 822
RFC 822 defines a format for text messages that are sent using electronic mail and it

has been the standard for Internet-based text mail message. The overall structure of a

message that conforms to RFC 822 is very simple. A message consists of some number of

header lines (the header) followed by unrestricted text (the body). The header is separated

from the body by a blank line. A header line usually consists of a keyword, followed by a

colon, followed by the keyword's arguments; the format allows a long line to be broken up

into several lines. The most frequently used keywords are From, To, Subject, and Date.

Multipurpose Internet Mail Extensions

MIME is an extension to the RFC 822 framework that is intended to address some

of the problems and limitations of the use of SMTP (Simple Mail Transfer Protocol) or some

other mail transfer protocol and RFC 822 for electronic mail.

Problems with RFC 822 and SMTP

• Executable files or other binary objects must be converted into ASCII. Various
schemes exist (e.g., Unix UUencode), but a standard is needed

• Text data that includes special characters (e.g., Hungarian text) cannot be
transmitted as SMTP is limited to 7-bit ASCII

• Some servers reject mail messages over a certain size
• Some common problems exist with the SMTP implementations which do not adhere

completely to the SMTP standards defined in RFC 821. They are:
 delete, add, or reorder CR and LF characters

 truncate or wrap lines longer than 76 characters

 remove trailing white space (tabs and spaces)

 pad lines in a message to the same length

 convert tab characters into multiple spaces

MIME is intended to resolve these problems in a manner that is compatible with existing

RFC 822 implementations and the specification is provided in RFC’s 2045 through 2049.

15

E-MAIL PRIVACY (Unit-4)

The MIME specification includes the following elements:

1. Five new message header fields are defined, which provide information about the

body of the message.

2. A number of content formats are defined, thus standardizing representations that

support multimedia electronic mail.
3. Transfer encodings are defined that protect the content from alteration by the mail

system.

MIME - New header fields

The five header fields defined in MIME are as follows:

• MIME-Version: Must have the parameter value 1.0. This field indicates that the message
conforms to RFCs 2045 and 2046.

• Content-Type: Describes the data contained in the body with sufficient detail that the
receiving user agent can pick an appropriate agent or mechanism to represent the data
to the user or otherwise deal with the data in an appropriate manner.

• Content-Transfer-Encoding: Indicates the type of transformation that has been used to
represent the body of the message in a way that is acceptable for mail transport.

• Content-ID: Used to identify MIME entities uniquely in multiple contexts.
• Content-Description: A text description of the object with the body; this is useful when

the object is not readable (e.g., audio data).

MIME Content Types

The bulk of the MIME specification is concerned with the definition of a variety of
content types. There are seven different major types of content and a total of 15 subtypes.
In general, a content type declares the general type of data, and the subtype specifies a
particular format for that type of data.

For the text type of body, the primary subtype is plain text, which is simply a string
of ASCII characters or ISO 8859 characters. The enriched subtype allows greater formatting
flexibility.

The multipart type indicates that the body contains multiple, independent parts. The
Content-Type header field includes a parameter called boundary that defines the delimiter
between body parts. This boundary should not appear in any parts of the message. Each
boundary starts on a new line and consists of two hyphens followed by the boundary value.
The final boundary, which indicates the end of the last part, also has a suffix of two
hyphens. Within each part, there may be an optional ordinary MIME header. There are four
subtypes of the multipart type, all of which have the same overall syntax.

16

E-MAIL PRIVACY (Unit-4)

The message type provides a number of important capabilities in MIME. The
message/rfc822 subtype indicates that the body is an entire message, including header and
body. Despite the name of this subtype, the encapsulated message may be not only a
simple RFC 822 message, but also any MIME message. The message/partial subtype enables
fragmentation of a large message into a number of parts, which must be reassembled at the
destination. For this subtype, three parameters are specified in the Content-Type:
Message/Partial field: an id common to all fragments of the same message, a sequence
number unique to each fragment, and the total number of fragments. The
message/external-body subtype indicates that the actual data to be conveyed in this
message are not contained in the body. Instead, the body contains the information needed
to access the data. The application type refers to other kinds of data, typically either
uninterpreted binary data or information to be processed by a mail-based application.

17

E-MAIL PRIVACY (Unit-4)

MIME Transfer Encodings

The other major component of the MIME specification, in addition to content type
specification, is a definition of transfer encodings for message bodies. The objective is to
provide reliable delivery across the largest range of environments.

The MIME standard defines two methods of encoding data. The Content-Transfer-Encoding
field can actually take on six values. Three of these values (7bit, 8bit, and binary) indicate
that no encoding has been done but provide some information about the nature of the
data. Another Content-Transfer-Encoding value is x-token, which indicates that some other
encoding scheme is used, for which a name is to be supplied. The two actual encoding
schemes defined are quoted-printable and base64. Two schemes are defined to provide a
choice between a transfer technique that is essentially human readable and one that is safe
for all types of data in a way that is reasonably compact.

The quoted-printable transfer encoding is useful when the data consists largely of
octets that correspond to printable ASCII characters. In essence, it represents nonsafe
characters by the hexadecimal representation of their code and introduces reversible (soft)
line breaks to limit message lines to 76 characters. The base64 transfer encoding, also
known as radix-64 encoding, is a common one for encoding arbitrary binary data in such a
way as to be invulnerable to the processing by mail transport programs.

Canonical Form

An important concept in MIME and S/MIME is that of canonical form. Canonical form is a
format, appropriate to the content type, that is standardized for use between systems. This
is in contrast to native form, which is a format that may be peculiar to a particular system.

18

E-MAIL PRIVACY (Unit-4)

S/MIME Functionality

S/MIME has a very similar functionality to PGP. Both offer the ability to sign and/or encrypt
messages.

Functions

S/MIME provides the following functions:

• Enveloped data: This consists of encrypted content of any type and encrypted-
content encryption keys for one or more recipients.

• Signed data: A digital signature is formed by taking the message digest of the
content to be signed and then encrypting that with the private key of the signer. The
content plus signature are then encoded using base64 encoding. A signed data
message can only be viewed by a recipient with S/MIME capability.

• Clear-signed data: As with signed data, a digital signature of the content is formed.
However, in this case, only the digital signature is encoded using base64. As a result,
recipients without S/MIME capability can view the message content, although they
cannot verify the signature.

• Signed and enveloped data: Signed-only and encrypted-only entities may be nested,
so that encrypted data may be signed and signed data or clear-signed data may be
encrypted.

19

E-MAIL PRIVACY (Unit-4)

Cryptographic Algorithms

S/MIME uses the following terminology, taken from RFC 2119 to specify the requirement
level:

• Must: The definition is an absolute requirement of the specification. An
implementation must include this feature or function to be in conformance with the
specification.

• Should: There may exist valid reasons in particular circumstances to ignore this
feature or function, but it is recommended that an implementation include the
feature or function.

The following table summarizes the cryptographic algorithms used in S/MIME.

20

E-MAIL PRIVACY (Unit-4)

S/MIME incorporates three public-key algorithms. The Digital Signature Standard
(DSS) is the preferred algorithm for digital signature. S/MIME lists Diffie-Hellman as the
preferred algorithm for encrypting session keys; in fact, S/MIME uses a variant of Diffie-
Hellman that does provide encryption/decryption, known as ElGamal. As an alternative,
RSA, can be used for both signatures and session key encryption. These are the same
algorithms used in PGP and provide a high level of security. For the hash function used to
create the digital signature, the specification requires the 160-bit SHA-1 but recommends
receiver support for the 128-bit MD5 for backward compatibility with older versions of
S/MIME. As there is justifiable concern about the security of MD5, SHA-1 is clearly the
preferred alternative.

A sending agent has two decisions to make. First, the sending agent must determine
if the receiving agent is capable of decrypting using a given encryption algorithm. Second, if
the receiving agent is only capable of accepting weakly encrypted content, the sending
agent must decide if it is acceptable to send using weak encryption. To support this decision
process, a sending agent may announce its decrypting capabilities in order of preference
any message that it sends out. A receiving agent may store that information for future use.

The following rules, in the following order, should be followed by a sending agent:

1. If the sending agent has a list of preferred decrypting capabilities from an intended
recipient, it SHOULD choose the first (highest preference) capability on the list that it
is capable of using.

2. If the sending agent has no such list of capabilities from an intended recipient but
has received one or more messages from the recipient, then the outgoing message
SHOULD use the same encryption algorithm as was used on the last signed and
encrypted message received from that intended recipient.

3. If the sending agent has no knowledge about the decryption capabilities of the
intended recipient and is willing to risk that the recipient may not be able to decrypt
the message, then the sending agent SHOULD use tripleDES.

4. If the sending agent has no knowledge about the decryption capabilities of the
intended recipient and is not willing to risk that the recipient may not be able to
decrypt the message, then the sending agent MUST use RC2/40.

If a message is to be sent to multiple recipients and a common encryption algorithm cannot

be selected for all, then the sending agent will need to send two messages.

21

E-MAIL PRIVACY (Unit-4)

S/MIME Messages

S/MIME makes use of a number of new MIME content types, which are shown below:

S/MIME Content Types

Securing a MIME Entity

S/MIME secures a MIME entity with a signature, encryption, or both. A MIME entity

may be an entire message (except for the RFC 822 headers), or if the MIME content type is

multipart, then a MIME entity is one or more of the subparts of the message. The MIME

entity is prepared according to the normal rules for MIME message preparation. Then the

MIME entity plus some security-related data, such as algorithm identifiers and certificates,

are processed by S/MIME to produce what is known as a PKCS object. A PKCS object is then

treated as message content and wrapped in MIME (provided with appropriate MIME

headers).

EnvelopedData

An application/pkcs7-mime subtype is used for one of four categories of S/MIME
processing, each with a unique smime-type parameter. In all cases, the resulting entity,
referred to as an object, is represented in a form known as Basic Encoding Rules (BER),
which is defined in ITU-T Recommendation X.209. The BER format consists of arbitrary octet
strings and is therefore binary data. Such an object should be transfer encoded with base64
in the outer MIME message. We first look at envelopedData.

The steps for preparing an envelopedData MIME entity are as follows:

1. Generate a pseudorandom session key for a particular symmetric encryption algorithm
(RC2/40 or tripleDES).

22

E-MAIL PRIVACY (Unit-4)

2. For each recipient, encrypt the session key with the recipient's public RSA key.

3. For each recipient, prepare a block known as RecipientInfo that contains an identifier of

the recipient's public-key certificate,
[3]

 an identifier of the algorithm used to encrypt
the session key, and the encrypted session key.

4. Encrypt the message content with the session key.

The RecipientInfo blocks followed by the encrypted content constitute the envelopedData.
This information is then encoded into base64. To recover the signed message and verify the
signature, the recipient first strips off the base64 encoding. Then the signer's public key is
used to decrypt the message digest. The recipient independently computes the message
digest and compares it to the decrypted message digest to verify the signature.

Clear Signing

Clear signing is achieved using the multipart content type with a signed subtype. This
signing process does not involve transforming the message to be signed, so that the
message is sent "in the clear." Thus, recipients with MIME capability but not S/MIME
capability are able to read the incoming message.

A multipart/signed message has two parts. The first part can be any MIME type but
must be prepared so that it will not be altered during transfer from source to destination.
This means that if the first part is not 7bit, then it needs to be encoded using base64 or
quoted-printable. Then this part is processed in the same manner as signedData, but in this
case an object with signedData format is created that has an empty message content field.
This object is a detached signature. It is then transfer encoded using base64 to become the
second part of the multipart/signed message. This second part has a MIME content type of
application and a subtype of pkcs7-signature.The protocol parameter indicates that this is a
two-part clear-signed entity. The micalg parameter indicates the type of message digest
used. The receiver can verify the signature by taking the message digest of the first part and
comparing this to the message digest recovered from the signature in the second part.

Registration Request

Typically, an application or user will apply to a certification authority for a public-key
certificate. The application/pkcs10 S/MIME entity is used to transfer a certification request.
The certification request includes certificationRequestInfo block, followed by an identifier of
the public-key encryption algorithm, followed by the signature of the
certificationRequestInfo block, made using the sender's private key. The
certificationRequestInfo block includes a name of the certificate subject (the entity whose
public key is to be certified) and a bit-string representation of the user's public key.
Certificates-Only Message

A message containing only certificates or a certificate revocation list (CRL) can be sent in
response to a registration request. The message is an application/pkcs7-mime type/subtype
with an smime-type parameter of degenerate. The steps involved are the same as those for
creating a signedData message, except that there is no message content and the signerInfo
field is empty.

23

mk:@MSITStore:F:Mukesh%20filesregarding%20Information%20securitytext%20booksPrentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm::/0131873164/ch15lev1sec2.html#ch15fn3

E-MAIL PRIVACY (Unit-4)

S/MIME Certificate Processing

S/MIME uses public-key certificates that conform to version 3 of X.509. The key-

management scheme used by S/MIME is in some ways a hybrid between a strict X.509

certification hierarchy and PGP’s web of trust. S/MIME managers and/or users must

configure each client with a list of trusted keys and with certificate revocation lists, needed

to verify incoming signatures and to encrypt outgoing messages. But certificates are signed

by trusted certification authorities.

User Agent Role
An S/MIME user has several key-management functions to perform:

• Key generation: The user of some related administrative utility (e.g., one associated
with LAN management) MUST be capable of generating separate Diffie-Hellman and DSS
key pairs and SHOULD be capable of generating RSA key pairs.

• Registration: A user's public key must be registered with a certification authority in
order to receive an X.509 public-key certificate.

• Certificate storage and retrieval: A user requires access to a local list of certificates in
order to verify incoming signatures and to encrypt outgoing messages.

S/MIME – Certification Authorities
"Certificate Authority" (CA), or "Trust Center", is the name used for an organisation that acts

as the agent of trust in a PKI (Public Key Infrastructure) and also for the piece of software.

PKI needed for secure use of public key based protocols

A CA performs 5 main functions:

• Verifies users' identities - this may be done by the CA itself, or on its behalf by a
Local Registration Authority (LRA)

• Issues users with keys (though sometimes users may generate their own key pair)
• Certifies users' public keys
• Publishes users’certificates
• Issues certificate revocation lists (CRLs)

VeriSign Certificates

There are several companies that provide certification authority (CA) services. VeriSign
provides a CA service that is intended to be compatible with S/MIME and a variety of other
applications. VeriSign issues X.509 certificates with the product name VeriSign Digital ID.
The information contained in a Digital ID depends on the type of Digital ID and its use. At a
minimum, each Digital ID contains

• Owner's public key
• Owner's name or alias
• Expiration date of the Digital ID

24

E-MAIL PRIVACY (Unit-4)

• Serial number of the Digital ID
• Name of the certification authority that issued the Digital ID
• Digital signature of the certification authority that issued the Digital ID

Digital IDs can also contain other user-supplied information, including

• Address
• E-mail address
• Basic registration information (country, zip code, age, and gender)

VeriSign provides three levels, or classes, of security for public-key certificates. A user

requests a certificate online at VeriSign's Web site or other participating Web sites. Class 1

and Class 2 requests are processed on line, and in most cases take only a few seconds to

approve.

• For Class 1 Digital IDs, VeriSign confirms the user's e-mail address by sending a PIN and
Digital ID pick-up information to the e-mail address provided in the application.

• For Class 2 Digital IDs, VeriSign verifies the information in the application through an
automated comparison with a consumer database in addition to performing all of the
checking associated with a Class 1 Digital ID. Finally, confirmation is sent to the specified
postal address alerting the user that a Digital ID has been issued in his or her name.

• For Class 3 Digital IDs, VeriSign requires a higher level of identity assurance. An
individual must prove his or her identity by providing notarized credentials or applying in
person.

Enhanced Security Services
Three enhanced security services have been proposed in an Internet draft. The three

services are as follows:
• Signed receipts

APPENDIX•Securitylabels

• Secure mailing lists

Radix-64 Conversion
Both PGP and S/MIME make use of an encoding technique referred to as radix-64

conversion. This technique maps arbitrary binary input into printable character output. The

form of encoding has the following relevant characteristics:

25

E-MAIL PRIVACY (Unit-4)

1. The range of the function is a character set that is universally representable at all

sites, not a specific binary encoding of that character set.

2. The character set consists of 65 printable characters, one of which is used for

padding. With 2
6
 = 64 available characters, each character can be used to represent

6 bits of input
3. No control characters are included in the set

4. The hyphen character ("-") is not used.

For example, consider the 24-bit raw text sequence 00100011 01011100 10010001, which
can be expressed in hexadecimal as 235C91. We arrange this input in blocks of 6 bits:

001000 110101 110010 010001

The extracted 6-bit decimal values are 8, 53, 50, 17. Looking these up in above table yields
the radix-64 encoding as the following characters: I1yR. If these characters are stored in 8-
bit ASCII format with parity bit set to zero, we have

01001001 00110001 01111001 01010010

In hexadecimal, this is 49317952. To summarize,

26

E-MAIL PRIVACY (Unit-4)

Assignment Questions

1. (a) Explain the following terms in relation with the e-mail software - PGP:

i. E-mail compatibility

ii. Segmentation and reassembly. [8+8]

(b) Describe how authentication and confidentiality are handled in S/MIME.

2. (a) Explain the importance and usage of the following in relation to PGP:

i. Session key

ii. Signature

iii. Public / Private keys.

(b) Describe how S/MIME works towards emerging as an industry standard for e-mail

security at commercial and organizational use levels. [8+8]

3. (a) Explain how the exchange of secret key takes place between ‘X’ and ‘Y’ users with

PGP.
(b) List limitations of SMTP and MIME Write about the SMIME messages

4. (a) Explain why PGP generates a signature before applying the compression.

(b) Discuss the requirement of segmentation and reassembly function in PGP.

(c) write about MIME Content types.

5. (a) Explain the general format of a PGP message with a pictorial representation.

(b) What is a Certification Authority and explain its role in S/MIME.

6. (a) Compare and contrast the key management in PGP and S/MIME.

(b) Write about how PGP messages are created.

7. (a) What is Radix-64 format? Explain how both PGP and S/MIME perform the Radix-64

conversion is performed.

(b) Describe the five principal services that Pretty Good Privacy (PGP) provides.

8. (a) Describe PGP session key generation

(b) Explain the functionality of S/MIME

27

1
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

IP Security Overview
Def: Internet Protocol security (IPSec) is a framework of open standards for protecting

communications over Internet Protocol (IP) networks through the use of cryptographic
security services. IPSec supports network-level peer authentication, data origin
authentication, data integrity, data confidentiality (encryption), and replay protection.

Need for IPSec

In Computer Emergency Response Team (CERT)’s 2001 annual report it listed 52,000
security incidents in which most serious types of attacks included IP spoofing, in which
intruders create packets with false IP addresses and exploit applications that use
authentication based on IP and various forms of eavesdropping and packet sniffing, in
which attackers read transmitted information, including logon information and database
contents. In response to these issues, the IAB included authentication and encryption as
necessary security features in the next-generation IP i.e. IPv6.

Applications of IPSec
IPSec provides the capability to secure communications across a LAN, across private and
public wide area networks (WAN’s), and across the Internet.

• Secure branch office connectivity over the Internet: A company can build a secure
virtual private network over the Internet or over a public WAN. This enables a business
to rely heavily on the Internet and reduce its need for private networks, saving costs and
network management overhead.

• Secure remote access over the Internet: An end user whose system is equipped with IP
security protocols can make a local call to an Internet service provider (ISP) and gain
secure access to a company network. This reduces the cost of toll charges for travelling
employees and telecommuters.

• Establishing extranet and intranet connectivity with partners: IPSec can be used to
secure communication with other organizations, ensuring authentication and
confidentiality and providing a key exchange mechanism.

• Enhancing electronic commerce security: Even though some Web and electronic
commerce applications have built-in security protocols, the use of IPSec enhances that
security.

The principal feature of IPSec enabling it to support varied applications is that it can encrypt
and/or authenticate all traffic at IP level. Thus, all distributed applications, including remote
logon, client/server, e-mail, file transfer, Web access, and so on, can be secured.

www.jntuworld.com

www.jntuworld.com

2
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

 The following figure shows a typical scenario of IPSec usage. An organization maintains

LANs at dispersed locations. Non secure IP traffic is conducted on each LAN.

The IPSec protocols operate in networking devices, such as a router or firewall that connect
each LAN to the outside world. The IPSec networking device will typically encrypt and
compress all traffic going into the WAN, and decrypt and decompress traffic coming from
the WAN; these operations are transparent to workstations and servers on the LAN. Secure
transmission is also possible with individual users who dial into the WAN. Such user
workstations must implement the IPSec protocols to provide security.

Benefits of IPSec
The benefits of IPSec are listed below:

• IPSec in a firewall/router provides strong security to all traffic crossing the perimeter

• IPSec in a firewall is resistant to bypass

• IPSec is below transport layer(TCP,UDP), hence transparent to applications

• IPSec can be transparent to end users

• IPSec can provide security for individual users if needed (useful for offsite workers
and setting up a secure virtual subnetwork for sensitive applications)

Routing Applications
IPSec also plays a vital role in the routing architecture required for internetworking. It assures that:

• router advertisements come from authorized routers
• neighbor advertisements come from authorized routers
• redirect messages come from the router to which initial packet was sent
• A routing update is not forged

www.jntuworld.com

www.jntuworld.com

3
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

IP Security Architecture
To understand IP Security architecture, we examine IPSec documents first and then move
on to IPSec services and Security Associations.

IPSec Documents

The IPSec specification consists of numerous documents. The most important of these,
issued in November of 1998, are RFCs 2401, 2402, 2406, and 2408:

• RFC 2401: An overview of a security architecture
• RFC 2402: Description of a packet authentication extension to IPv4 and IPv6
• RFC 2406: Description of a packet encryption extension to IPv4 and IPv6
• RFC 2408: Specification of key management capabilities

Support for these features is mandatory for IPv6 and optional for IPv4. In both cases, the
security features are implemented as extension headers that follow the main IP header. The
extension header for authentication is known as the Authentication header; that for
encryption is known as the Encapsulating Security Payload (ESP) header. In addition to these
four RFCs, a number of additional drafts have been published by the IP Security Protocol
Working Group set up by the IETF. The documents are divided into seven groups, as
depicted in following figure:

• Architecture: Covers the general concepts, security requirements, definitions, and mechanisms
defining IPSec technology

• Encapsulating Security Payload (ESP): Covers the packet format and general issues related to
the use of the ESP for packet encryption and, optionally, authentication.

• Authentication Header (AH): Covers the packet format and general issues related to the use of
AH for packet authentication.

www.jntuworld.com

www.jntuworld.com

4
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

• Encryption Algorithm: A set of documents that describe how various encryption algorithms are
used for ESP.

• Authentication Algorithm: A set of documents that describe how various authentication
algorithms are used for AH and for the authentication option of ESP.

• Key Management: Documents that describe key management schemes.

• Domain of Interpretation (DOI): Contains values needed for the other documents to relate to
each other. These include identifiers for approved encryption and authentication algorithms, as
well as operational parameters such as key lifetime.

IPSec Services
IPSec architecture makes use of two major protocols (i.e., Authentication Header and ESP
protocols) for providing security at IP level. This facilitates the system to beforehand choose
an algorithm to be implemented, security protocols needed and any cryptographic keys
required to provide requested services. The IPSec services are as follows:

 Connectionless Integrity:- Data integrity service is provided by IPSec via AH which
prevents the data from being altered during transmission.

 Data Origin Authentication:- This IPSec service prevents the occurrence of replay
attacks, address spoofing etc., which can be fatal

 Access Control:- The cryptographic keys are distributed and the traffic flow is controlled
in both AH and ESP protocols, which is done to accomplish access control over the data
transmission.

 Confidentiality:- Confidentiality on the data packet is obtained by using an encryption
technique in which all the data packets are transformed into ciphertext packets which
are unreadable and difficult to understand.

 Limited Traffic Flow Confidentiality:- This facility or service provided by IPSec ensures
that the confidentiality is maintained on the number of packets transferred or received.
This can be done using padding in ESP.

 Replay packets Rejection:- The duplicate or replay packets are identified and discarded
using the sequence number field in both AH and ESP.

www.jntuworld.com

www.jntuworld.com

5
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

Security Associations

Since IPSEC is designed to be able to use various security protocols, it uses Security
Associations (SA) to specify the protocols to be used. SA is a database record which specifies
security parameters controlling security operations. They are referenced by the sending
host and established by the receiving host. An index parameter called the Security
Parameters Index (SPI) is used. SAs are in one direction only and a second SA must be
established for the transmission to be bi-directional. A security association is uniquely
identified by three parameters:

• Security Parameters Index (SPI): A bit string assigned to this SA and having local
significance only. The SPI is carried in AH and ESP headers to enable the receiving system
to select the SA under which a received packet will be processed.

• IP Destination Address: Currently, only unicast addresses are allowed; this is the address
of the destination endpoint of the SA, which may be an end user system or a network
system such as a firewall or router.

• Security Protocol Identifier: This indicates whether the association is an AH or ESP
security association.

SA Parameters
In each IPSec implementation, there is a nominal Security Association Database that defines
the parameters associated with each SA. A security association is normally defined by the
following parameters:
• Sequence Number Counter: A 32-bit value used to generate the Sequence Number field

in AH or ESP headers
• Sequence Counter Overflow: A flag indicating whether overflow of the Sequence

Number Counter should generate an auditable event and prevent further transmission
of packets on this SA (required for all implementations).

• Anti-Replay Window: Used to determine whether an inbound AH or ESP packet is a
replay

• AH Information: Authentication algorithm, keys, key lifetimes, and related parameters
being used with AH (required for AH implementations).

• ESP Information: Encryption and authentication algorithm, keys, initialization values,
key lifetimes, and related parameters being used with ESP (required for ESP
implementations).

• Lifetime of This Security Association: A time interval or byte count after which an SA
must be replaced with a new SA (and new SPI) or terminated, plus an indication of which
of these actions should occur (required for all implementations).

• IPSec Protocol Mode: Tunnel, transport, or wildcard (required for all implementations).
These modes are discussed later in this section.

• Path MTU: Any observed path maximum transmission unit (maximum size of a packet
that can be transmitted without fragmentation) and aging variables (required for all
implementations).

www.jntuworld.com

www.jntuworld.com

6
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

Transport and Tunnel Modes
Both AH and ESP support two modes of use: transport and tunnel mode.

IP sec can be used (both AH packets and ESP packets) in two modes
• Transport mode: the IP sec header is inserted just after the IP header –this contains the

security information, such as SA identifier, encryption, authentication
 Typically used in end-to-end communication
 IP header not protected

• Tunnel mode: the entire IP packet, header and all, is encapsulated in the body of a new
IP packet with a completely new IP header
 Typically used in firewall-to-firewall communication
 Provides protection for the whole IP packet
 No routers along the way will be able (and will not need) to check the content of the

packets

End-to-End versus End-to-Intermediate Authentication

 Transport Mode SA Tunnel Mode SA

AH Authenticates IP payload and
selected portions of IP header and
IPv6 extension headers

Authenticates entire inner IP
packet plus selected portions of
outer IP header

ESP Encrypts IP payload and any IPv6
extesion header

Encrypts inner IP packet

ESP with
authentication

Encrypts IP payload and any IPv6
extesion header. Authenticates IP
payload but no IP header

Encrypts inner IP packet.
Authenticates inner IP packet.

www.jntuworld.com

www.jntuworld.com

7
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

 Authentication Header
The Authentication Header provides support for data integrity and authentication of IP
packets. The data integrity feature ensures that undetected modification to a packet's
content in transit is not possible. The authentication feature enables an end system or
network device to authenticate the user or application and filter traffic accordingly; it also
prevents the address spoofing attacks observed in today's Internet. The AH also guards
against the replay attack. Authentication is based on the use of a message authentication
code (MAC), hence the two parties must share a secret key. The Authentication Header
consists of the following fields:

 IPSec Authentication Header

• Next Header (8 bits): Identifies the type of header immediately following this header.
• Payload Length (8 bits): Length of Authentication Header in 32-bit words, minus 2. For

example, the default length of the authentication data field is 96 bits, or three 32-bit
words. With a three-word fixed header, there are a total of six words in the header, and
the Payload Length field has a value of 4.

• Reserved (16 bits): For future use.
• Security Parameters Index (32 bits): Identifies a security association.
• Sequence Number (32 bits): A monotonically increasing counter value, discussed later.
• Authentication Data (variable): A variable-length field (must be an integral number of

32-bit words) that contains the Integrity Check Value (ICV), or MAC, for this packet.

Anti-Replay Service
Anti-replay service is designed to overcome the problems faced due to replay attacks

in which an intruder intervenes the packet being transferred, make one or more duplicate
copies of that authenticated packet and then sends the packets to the desired destination,
thereby causing inconvenient processing at the destination node. The Sequence Number
field is designed to thwart such attacks.

www.jntuworld.com

www.jntuworld.com

8
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

When a new SA is established, the sender initializes a sequence number counter to
0. Each time that a packet is sent on this SA, the sender increments the counter and places
the value in the Sequence Number field. Thus, the first value to be used is 1. This value goes
on increasing with respect to the number of packets being transmitted. The sequence
number field in each packet represents the value of this counter. The maximum value of the
sequence number field can go up to 232-1. If the limit of 232-1 is reached, the sender should
terminate this SA and negotiate a new SA with a new key.

The IPSec authentication document dictates that the receiver should implement a
window of size W, with a default of W = 64. The right edge of the window represents the
highest sequence number, N, so far received for a valid packet. For any packet with a
sequence number in the range from N-W+1 to N that has been correctly received (i.e.,
properly authenticated), the corresponding slot in the window is marked as shown. Inbound
processing proceeds as follows when a packet is received:

 Antireplay Mechanism

1. If the received packet falls within the window and is new, the MAC is checked. If the
packet is authenticated, the corresponding slot in the window is marked.

2. If the received packet is to the right of the window and is new, the MAC is checked. If
the packet is authenticated, the window is advanced so that this sequence number is the
right edge of the window, and the corresponding slot in the window is marked.

3. If the received packet is to the left of the window, or if authentication fails, the packet is
discarded; this is an auditable event.

www.jntuworld.com

www.jntuworld.com

9
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

Integrity Check Value
ICV is the value present in the authenticated data field of ESP/AH, which is used to
determine any undesired modifications made to the data during its transit. ICV can also be
referred as MAC or part of MAC algorithm. MD5 hash code and SHA-1 hash code are
implemented along with HMAC algorithms i.e.,

• HMAC-MD5-96
• HMAC-SHA-1-96

In both cases, the full HMAC value is calculated but then truncated by using the first 96 bits,
which is the default length for the Authentication Data field. The MAC is calculated over

• IP header fields that either do not change in transit (immutable) or that are predictable
in value upon arrival at the endpoint for the AH SA. Fields that may change in transit and
whose value on arrival is unpredictable are set to zero for purposes of calculation at
both source and destination.

• The AH header other than the Authentication Data field. The Authentication Data field is
set to zero for purposes of calculation at both source and destination.

• The entire upper-level protocol data, which is assumed to be immutable in transit (e.g.,
a TCP segment or an inner IP packet in tunnel mode).

Transport and Tunnel Modes

The following figure shows typical IPv4 and IPv6 packets. In this case, the IP payload is a
TCP segment; it could also be a data unit for any other protocol that uses IP, such as UDP or ICMP.

For transport mode AH using IPv4, the AH is inserted after the original IP header and
before the IP payload (e.g., a TCP segment) shown below. Authentication covers the entire
packet, excluding mutable fields in the IPv4 header that are set to zero for MAC calculation.
In the context of IPv6, AH is viewed as an end-to-end payload; that is, it is not examined or
processed by intermediate routers. Therefore, the AH appears after the IPv6 base header
and the hop-by-hop, routing, and fragment extension headers. The destination options
extension header could appear before or after the AH header, depending on the semantics
desired. Again, authentication covers the entire packet, excluding mutable fields that are set
to zero for MAC calculation.

www.jntuworld.com

www.jntuworld.com

10
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

For tunnel mode AH, the entire original IP packet is authenticated, and the AH is
inserted between the original IP header and a new outer IP header. The inner IP header
carries the ultimate source and destination addresses, while an outer IP header may contain
different IP addresses (e.g., addresses of firewalls or other security gateways). With tunnel
mode, the entire inner IP packet, including the entire inner IP header is protected by AH.
The outer IP header (and in the case of IPv6, the outer IP extension headers) is protected
except for mutable and unpredictable fields.

www.jntuworld.com

www.jntuworld.com

11
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

Encapsulating Security Payload
The Encapsulating Security Payload provides confidentiality services, including
confidentiality of message contents and limited traffic flow confidentiality. As an optional
feature, ESP can also provide an authentication service.

ESP Format
The following figure shows the format of an ESP packet. It contains the following fields:

 IPSec ESP format

• Security Parameters Index (32 bits): Identifies a security association.
• Sequence Number (32 bits): A monotonically increasing counter value; this provides an

anti-replay function, as discussed for AH.
• Payload Data (variable): This is a transport-level segment (transport mode) or IP packet

(tunnel mode) that is protected by encryption.
• Padding (0-255 bytes): This field is used to make the length of the plaintext to be a

multiple of some desired number of bytes. It is also added to provide confidentiality.
• Pad Length (8 bits): Indicates the number of pad bytes immediately preceding this field.
• Next Header (8 bits): Identifies the type of data contained in the payload data field by

identifying the first header in that payload (for example, an extension header in IPv6, or
an upper-layer protocol such as TCP).

• Authentication Data (variable): A variable-length field (must be an integral number of
32-bit words) that contains the Integrity Check Value computed over the ESP packet
minus the Authentication Data field.

Adding encryption makes ESP a bit more complicated because the encapsulation
surrounds the payload rather than precedes it as with AH: ESP includes header and trailer

www.jntuworld.com

www.jntuworld.com

Vigilante
Sticky Note
For understanding purpose only.

Vigilante
Sticky Note
Marked set by Vigilante

12
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

fields to support the encryption and optional authentication. It also provides Tunnel and
Transport modes. The IPSec RFCs don't insist upon any particular encryption algorithms, but
we find DES, triple-DES, AES, and Blowfish in common use to shield the payload from prying
eyes. The algorithm used for a particular connection is specified by the Security Association
and this SA includes not only the algorithm, but the key used. Unlike AH, which provides a
small header before the payload, ESP surrounds the payload it's protecting. The Security
Parameters Index and Sequence Number serve the same purpose as in AH, but we find
padding, the next header, and the optional Authentication Data at the end, in the ESP
Trailer.

It's possible to use ESP without any actual encryption (to use a NULL algorithm), which
nonetheless structures the packet the same way. This provides no confidentiality, and it only
makes sense if combined with ESP authentication. Padding is provided to allow block-
oriented encryption algorithms room for multiples of their block size, and the length of that
padding is provided in the pad len field. The next hdr field gives the type (IP, TCP, UDP, etc.)
of the payload in the usual way, though it can be thought of as pointing "backwards" into
the packet rather than forward as we've seen in AH. In addition to encryption, ESP can also
optionally provide authentication, with the same HMAC as found in AH. Unlike AH, however,
this authentication is only for the ESP header and encrypted payload: it does not cover the
full IP packet.

Transport Mode ESP

Transport mode ESP is used to encrypt and optionally authenticate the data carried
by IP (e.g., a TCP segment). For this mode using IPv4, the ESP header is inserted into the IP
packet immediately prior to the transport-layer header (e.g., TCP, UDP, ICMP) and an ESP
trailer (Padding, Pad Length, and Next Header fields) is placed after the IP packet; if
authentication is selected, the ESP Authentication Data field is added after the ESP trailer.
The entire transport-level segment plus the ESP trailer are encrypted. Authentication covers
all of the ciphertext plus the ESP header. In the context of IPv6, ESP is viewed as an end-to-
end payload; that is, it is not examined or processed by intermediate routers. Therefore, the
ESP header appears after the IPv6 base header and the hop-by-hop, routing, and fragment

www.jntuworld.com

www.jntuworld.com

13
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

extension headers. The destination options extension header could appear before or after
the ESP header, depending on the semantics desired. For IPv6, encryption covers the entire
transport-level segment plus the ESP trailer plus the destination options extension header if
it occurs after the ESP header. Again, authentication covers the ciphertext plus the ESP
header.

Transport mode operation may be summarized as follows:

1. At the source, the block of data consisting of the ESP trailer plus the entire transport-layer
segment is encrypted and the plaintext of this block is replaced with its ciphertext to form
the IP packet for transmission. Authentication is added if this option is selected.

2. The packet is then routed to the destination. Each intermediate router needs to examine
and process the IP header plus any plaintext IP extension headers but does not need to
examine the ciphertext.

3. The destination node examines and processes the IP header plus any plaintext IP extension
headers. Then, on the basis of the SPI in the ESP header, the destination node decrypts the
remainder of the packet to recover the plaintext transport-layer segment.

Transport mode operation provides confidentiality for any application that uses it, thus
avoiding the need to implement confidentiality in every individual application. This mode of
operation is also reasonably efficient, adding little to the total length of the IP packet. One
drawback to this mode is that it is possible to do traffic analysis on the transmitted packets.

Tunnel Mode ESP
 In case of tunnel mode ESP, ESP header and the ESP trailer are attached before and
after the IP packet respectively, then the complete IP packet which includes IP header,
Transport header and data field along with the ESP trailer is encrypted. Tunnel mode ESP is
used to protect against the traffic flow analysis. But if ESP header precedes the IP header,
the routers cannot identify and process this packet as the routing information and other
parameters needed are present in the IP header of the packet. To overcome this problem,

www.jntuworld.com

www.jntuworld.com

14
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

the complete structure which contains ESP header, encrypted text as well as authentication
data are encapsulated in a new IP packet with a new IP header. This new IP header has
enough routing information inorder to process the packet to the appropriate destination.

The transport mode is suitable for protecting connections between hosts that support the
ESP feature and the tunnel mode is useful in a configuration that includes a firewall or other
sort of security gateway that protects a trusted network from external networks. Consider a
case in which an external host wishes to communicate with a host on an internal network
protected by a firewall, and in which ESP is implemented in the external host and the
firewalls. The following steps occur for transfer of a transport-layer segment from the
external host to the internal host:

1. The source prepares an inner IP packet with a destination address of the target internal
host. This packet is prefixed by an ESP header; then the packet and ESP trailer are
encrypted and Authentication Data may be added. The resulting block is encapsulated
with a new IP header (base header plus optional extensions such as routing and hop-by-
hop options for IPv6) whose destination address is the firewall; this forms the outer IP
packet.

2. The outer packet is routed to the destination firewall. Each intermediate router needs to
examine and process the outer IP header plus any outer IP extension headers but does
not need to examine the ciphertext.

3. The destination firewall examines and processes the outer IP header plus any outer IP
extension headers. Then, on the basis of the SPI in the ESP header, the destination node
decrypts the remainder of the packet to recover the plaintext inner IP packet. This
packet is then transmitted in the internal network.

4. The inner packet is routed through zero or more routers in the internal network to the
destination host.

www.jntuworld.com

www.jntuworld.com

15
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

Combining Security Associations
An individual SA can implement either the AH or ESP protocol but not both. Multiple SAs
must be employed for traffic flow to achieve the desired IPSec services. The term security
association bundle refers to a sequence of SAs through which traffic must be processed to
provide a desired set of IPSec services. The SAs in a bundle may terminate at different
endpoints or at the same endpoints. Security associations may be combined into bundles in
two ways:

• Transport adjacency: Refers to applying more than one security protocol to the same IP
packet, without invoking tunnelling.

• Iterated tunnelling: Refers to the application of multiple layers of security protocols
effected through IP tunnelling. This approach allows for multiple levels of nesting, since
each tunnel can originate or terminate at a different IPSec site along the path.

Authentication Plus Confidentiality
Encryption and authentication can be combined in order to transmit an IP packet that has
both confidentiality and authentication between hosts. There are several approaches for
this:

ESP with Authentication Option
In this approach, the encryption is carried out on a data packet prior to its authentication.
This can be represented using the following two cases:

• Transport Mode ESP
• Tunnel Mode ESP

Transport Adjacency
Another way to apply authentication after encryption is to use two bundled

transport SAs, with the inner being an ESP SA and the outer being an AH SA. In this case ESP
is used without its authentication option. Because the inner SA is a transport SA, encryption
is applied to the IP payload. The resulting packet consists of an IP header (and possibly IPv6
header extensions) followed by an ESP. AH is then applied in transport mode, so that
authentication covers the ESP plus the original IP header (and extensions) except for
mutable fields. The advantage of this approach over simply using a single ESP SA with the
ESP authentication option is that the authentication covers more fields, including the source
and destination IP addresses. The disadvantage is the overhead of two SAs versus one SA.

Transport-Tunnel Bundle
The use of authentication prior to encryption might be preferable for several reasons. First,
because the authentication data are protected by encryption, it is impossible for anyone to
intercept the message and alter the authentication data without detection. Second, it may
be desirable to store the authentication information with the message at the destination for

www.jntuworld.com

www.jntuworld.com

16
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

later reference. It is more convenient to do this if the authentication information applies to
the unencrypted message; otherwise the message would have to be reencrypted to verify
the authentication information.

One approach to applying authentication before encryption between two hosts is to
use a bundle consisting of an inner AH transport SA and an outer ESP tunnel SA. In this case,
authentication is applied to the IP payload plus the IP header (and extensions) except for
mutable fields. The resulting IP packet is then processed in tunnel mode by ESP; the result is
that the entire, authenticated inner packet is encrypted and a new outer IP header (and
extensions) is added.

Basic Combinations of Security Associations

The IPSec Architecture document lists four examples of combinations of SAs that must be
supported by compliant IPSec hosts (e.g., workstation, server) or security gateways (e.g.
firewall, router).

case:-1

All security is provided between end systems that implement IPSec. For any two end
systems to communicate via an SA, they must share the appropriate secret keys. Among the
possible combinations:

a) AH in transport mode
b) ESP in transport mode
c) ESP followed by AH in transport mode (an ESP SA inside an AH SA)
d) Any one of a, b, or c inside an AH or ESP in tunnel mode

Case:-2

www.jntuworld.com

www.jntuworld.com

17
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

Security is provided only between gateways (routers, firewalls, etc.) and no hosts implement
IPSec. This case illustrates simple virtual private network support. The security architecture
document specifies that only a single tunnel SA is needed for this case. The tunnel could
support AH, ESP, or ESP with the authentication option. Nested tunnels are not required
because the IPSec services apply to the entire inner packet.

Case-3:-

The third combination is similar to the second, but in addition provides security even to
nodes. This combination makes use of two tunnels first for gateway to gateway and second
for node to node. Either authentication or the encryption or both can be provided by using
gateway to gateway tunnel. An additional IPSec service is provided to the individual nodes
by using node to node tunnel.

Case:-4

This combination is suitable for serving remote users i.e., the end user sitting anywhere in
the world can use the internet to access the organizational workstations via the firewall.
This combination states that only one tunnel is needed for communication between a
remote user and an organizational firewall.

www.jntuworld.com

www.jntuworld.com

18
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

Key Management
The key management portion of IPSec involves the determination and distribution of secret
keys. The IPSec Architecture document mandates support for two types of key
management:

• Manual: A system administrator manually configures each system with its own keys
and with the keys of other communicating systems. This is practical for small,
relatively static environments.

• Automated: An automated system enables the on-demand creation of keys for SAs
and facilitates the use of keys in a large distributed system with an evolving
configuration.

The default automated key management protocol for IPSec is referred to as ISAKMP/Oakley
and consists of the following elements:

• Oakley Key Determination Protocol: Oakley is a key exchange protocol based on the
Diffie-Hellman algorithm but providing added security. Oakley is generic in that it
does not dictate specific formats.

• Internet Security Association and Key Management Protocol (ISAKMP): ISAKMP
provides a framework for Internet key management and provides the specific
protocol support, including formats, for negotiation of security attributes.

Oakley Key Determination Protocol
Oakley is a refinement of the Diffie-Hellman key exchange algorithm. The Diffie-Hellman
algorithm has two attractive features:

• Secret keys are created only when needed. There is no need to store secret keys for
a long period of time, exposing them to increased vulnerability.

• The exchange requires no pre-existing infrastructure other than an agreement on
the global parameters.

However, Diffie-Hellman has got some weaknesses:
• No identity information about the parties is provided.
• It is possible for a man-in-the-middle attack
• It is computationally intensive. As a result, it is vulnerable to a clogging attack, in

which an opponent requests a high number of keys.
Oakley is designed to retain the advantages of Diffie-Hellman while countering its weaknesses.

Features of Oakley
The Oakley algorithm is characterized by five important features:
1. It employs a mechanism known as cookies to thwart clogging attacks.
2. It enables the two parties to negotiate a group; this, in essence, specifies the global

parameters of the Diffie-Hellman key exchange.
3. It uses nonces to ensure against replay attacks.
4. It enables the exchange of Diffie-Hellman public key values.
5. It authenticates the Diffie-Hellman exchange to thwart man-in-the-middle attacks.

www.jntuworld.com

www.jntuworld.com

19
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

In clogging attacks, an opponent forges the source address of a legitimate user and
sends a public Diffie-Hellman key to the victim. The victim then performs a modular
exponentiation to compute the secret key. Repeated messages of this type can clog the
victim's system with useless work. The cookie exchange requires that each side send a
pseudorandom number, the cookie, in the initial message, which the other side
acknowledges. This acknowledgment must be repeated in the first message of the Diffie-
Hellman key exchange. The recommended method for creating the cookie is to perform a
fast hash (e.g., MD5) over the IP Source and Destination addresses, the UDP Source and
Destination ports, and a locally generated secret value. Oakley supports the use of different
groups for the Diffie-Hellman key exchange. Each group includes the definition of the two
global parameters and the identity of the algorithm. Oakley employs nonces to ensure
against replay attacks. Each nonce is a locally generated pseudorandom number. Nonces
appear in responses and are encrypted during certain portions of the exchange to secure
their use. Three different authentication methods can be used with Oakley are digital
signatures, public-key encryption and Symmetric-key encryption.

Aggressive Oakley Key Exchange
Aggressive key exchange is a technique used for exchanging the message keys and is so
called because only three messages are allowed to be exchanged at any time.

Example of Aggressive Oakley Key Exchange

In the first step, the initiator (I) transmits a cookie, the group to be used, and I's
public Diffie-Hellman key for this exchange. I also indicates the offered public-key
encryption, hash, and authentication algorithms to be used in this exchange. Also included
in this message are the identifiers of I and the responder (R) and I's nonce for this exchange.
Finally, I appends a signature using I's private key that signs the two identifiers, the nonce,
the group, the Diffie-Hellman public key, and the offered algorithms. When R receives the
message, R verifies the signature using I's public signing key. R acknowledges the message
by echoing back I's cookie, identifier, and nonce, as well as the group. R also includes in the
message a cookie, R's Diffie-Hellman public key, the selected algorithms (which must be
among the offered algorithms), R's identifier, and R's nonce for this exchange. Finally, R

www.jntuworld.com

www.jntuworld.com

20
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

appends a signature using R's private key that signs the two identifiers, the two nonces, the
group, the two Diffie-Hellman public keys, and the selected algorithms.

When I receives the second message, I verifies the signature using R's public key. The
nonce values in the message assure that this is not a replay of an old message. To complete
the exchange, I must send a message back to R to verify that I has received R's public key.

ISAKMP
ISAKMP defines procedures and packet formats to establish, negotiate, modify, and delete
security associations. As part of SA establishment, ISAKMP defines payloads for exchanging
key generation and authentication data.

ISAKMP Header Format
An ISAKMP message consists of an ISAKMP header followed by one or more payloads and
must follow UDP transport layer protocol for its implementation. The header format of an
ISAKMP header is shown below:

• (64 bits): Cookie of entity that initiated SA establishment, SA notification,
or SA deletion.

• (64 bits): Cookie of responding entity; null in first message from initiator.
• (8 bits): Indicates the type of the first payload in the message
• (4 bits): Indicates major version of ISAKMP in use.
• (4 bits): Indicates minor version in use.
• (8 bits): Indicates the type of exchange. Can be informational, aggressive,

authentication only, identity protection or base exchange (S).
• (8 bits): Indicates specific options set for this ISAKMP exchange. Two bits so far

defined: The Encryption bit is set if all payloads following the header are encrypted using
the encryption algorithm for this SA. The Commit bit is used to ensure that encrypted
material is not received prior to completion of SA establishment.

• (32 bits): Unique ID for this message.
• (32 bits): Length of total message (header plus all payloads) in octets.

www.jntuworld.com

www.jntuworld.com

21
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

ISAKMP Payload Types
All ISAKMP payloads begin with the same generic payload header shown below.

The Next Payload field has a value of 0 if this is the last payload in the message; otherwise
its value is the type of the next payload. The Payload Length field indicates the length in
octets of this payload, including the generic payload header. There are many different
ISAKMP payload types. They are:

a. The SA payload is used to begin the establishment of an SA. The Domain of

Interpretation parameter identifies the DOI under which negotiation is taking place. The
Situation parameter defines the security policy for this negotiation; in essence, the levels
of security required for encryption and confidentiality are specified (e.g., sensitivity
level, security compartment).

b. The Proposal payload contains information used during SA negotiation. The payload
indicates the protocol for this SA (ESP or AH) for which services and mechanisms are
being negotiated. The payload also includes the sending entity's SPI and the number of
transforms. Each transform is contained in a transform payload.

c. The Transform payload defines a security transform to be used to secure the
communications channel for the designated protocol. The Transform # parameter serves
to identify this particular payload so that the responder may use it to indicate
acceptance of this transform. The Transform-ID and Attributes fields identify a specific
transform (e.g., 3DES for ESP, HMAC-SHA-1-96 for AH) with its associated attributes
(e.g., hash length).

d. The Key Exchange payload can be used for a variety of key exchange techniques,
including Oakley, Diffie-Hellman, and the RSA-based key exchange used by PGP. The Key
Exchange data field contains the data required to generate a session key and is
dependent on the key exchange algorithm used.

e. The Identification payload is used to determine the identity of communicating peers and
may be used for determining authenticity of information. Typically the ID Data field will
contain an IPv4 or IPv6 address.

f. The Certificate payload transfers a public-key certificate. The Certificate Encoding field
indicates the type of certificate or certificate-related information, which may include
SPKI, ARL, CRL, PGP info etc. At any point in an ISAKMP exchange, the sender may
include a Certificate Request payload to request the certificate of the other
communicating entity.

g. The Hash payload contains data generated by a hash function over some part of the
message and/or ISAKMP state. This payload may be used to verify the integrity of the
data in a message or to authenticate negotiating entities.

www.jntuworld.com

www.jntuworld.com

22
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

h. The Signature payload contains data generated by a digital signature function over
some part of the message and/or ISAKMP state. This payload is used to verify the
integrity of the data in a message and may be used for nonrepudiation services.

i. The Nonce payload contains random data used to guarantee liveness during an
exchange and protect against replay attacks.

j. The Notification payload contains either error or status information associated with this
SA or this SA negotiation. Some of the ISAKMP error messages that have been defined
are Invalid Flags, Invalid Cookie, Payload Malformed etc

k. The Delete payload indicates one or more SAs that the sender has deleted from its
database and that therefore are no longer valid.

ISAKMP Exchanges
ISAKMP provides a framework for message exchange, with the payload types serving as the building
blocks. The specification identifies five default exchange types that should be supported.

1. Base Exchange: allows key exchange and authentication material to be transmitted
together. This minimizes the number of exchanges at the expense of not providing
identity protection.

The first two messages provide cookies and establish an SA with agreed protocol and
transforms; both sides use a nonce to ensure against replay attacks. The last two messages
exchange the key material and user IDs, with an authentication mechanism used to
authenticate keys, identities, and the nonces from the first two messages.

2. Identity Protection Exchange: expands the Base Exchange to protect the users'

identities.

The first two messages establish the SA. The next two messages perform key exchange,
with nonces for replay protection. Once the session key has been computed, the two parties

www.jntuworld.com

www.jntuworld.com

23
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

exchange encrypted messages that contain authentication information, such as digital
signatures and optionally certificates validating the public keys.

3. Authentication Only Exchange: used to perform mutual authentication, without a
key exchange

The first two messages establish the SA. In addition, the responder uses the second

message to convey its ID and uses authentication to protect the message. The initiator
sends the third message to transmit its authenticated ID.

4. Aggressive Exchange: minimizes the number of exchanges at the expense of not

providing identity protection.

In the first message, the initiator proposes an SA with associated offered protocol

and transform options. The initiator also begins the key exchange and provides its ID. In
the second message, the responder indicates its acceptance of the SA with a particular
protocol and transform, completes the key exchange, and authenticates the transmitted
information. In the third message, the initiator transmits an authentication result that
covers the previous information, encrypted using the shared secret session key.

5. Informational Exchange: used for one-way transmittal of information for SA

management.

www.jntuworld.com

www.jntuworld.com

24
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

Appendix

IPv4 Header

 IPv6 Header

An internet protocol (IP) provides the functionality for interconnecting end systems across
multiple networks. For this purpose, IP is implemented in each end system and in routers, which are
devices that provide connection between networks. Higher-level data at a source end system are
encapsulated in an IP protocol data unit (PDU) for transmission. This PDU is then passed through one
or more networks and connecting routers to reach the destination end system.

TCP/IP Example

www.jntuworld.com

www.jntuworld.com

25
(Unit-5) IP Security

Mukesh Chinta
Asst Prof, CSE, VNRVJIET

Assignment questions

1. (a) Discuss about the documents regarding IPSec protocol? [8+8]
 (b) Describe any four ISAKMP payload types listing the parameters of the payload

2. (a) Discuss the scope of ESP encryption and authentication in both IPV4 and IPV6
 (b) Explain about transport adjacency and transport tunnel bundle? [8+8]

3. (a) Explain about the routing applications of IPSec?
 (b) Give the formats of ISAKMP header and Generic payload header? Explain various
fields [6+10]

4. (a) What are the security services provided by IPSec at the IP layer?
 (b) Explain Authentication header protocol in detail? [6+10]

5. (a) What is the default length of Authentication data field? On what fields is it calculated?
 (b) Explain how Diffie-Hellman protocol is vulnerable to man-in-the-middle attack? How
is rectified in Oakley protocol? [8+8]

6. (a) The IPSec architecture document states that when two transport mode SAs are bounded
to allow both AH and ESP protocols on the same end-to-end flow, only one ordering of
security protocols seems appropriate. Performing the ESP protocol before performing the AH
protocol. Why this approach is recommended rather authentication before encryption?
 (b) Discuss the advantages and disadvantages of Diffie-Hellman key exchange protocol?
What is the specific key exchange algorithm mandated for use in the initial version of
ISAKMP [8+8]

7. (a) Discuss the purpose of SA selectors?
 (b) Enumerate on the five default ISAKMP exchange types? [8+8]

8. (a) Explain transport and tunnel modes of AH
 (b) What are benefits and applications of IP Security

www.jntuworld.com

www.jntuworld.com

	Applications of IPSec
	Benefits of IPSec
	IPSec Documents
	IPSec Services
	Security Associations
	SA Parameters
	Transport and Tunnel Modes

	Anti-Replay Service
	Integrity Check Value
	Transport and Tunnel Modes
	Transport Mode ESP
	Tunnel Mode ESP
	Authentication Plus Confidentiality
	ESP with Authentication Option
	Transport Adjacency
	Transport-Tunnel Bundle
	Basic Combinations of Security Associations

	Oakley Key Determination Protocol
	Features of Oakley
	Aggressive Oakley Key Exchange

	ISAKMP
	ISAKMP Header Format
	ISAKMP Payload Types
	ISAKMP Exchanges

